已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn),弦AB經(jīng)過(guò)F2點(diǎn),若A點(diǎn)在x軸的下方,且|AF2|=2|F2B|,
AF1
BF1
=
16
9
a2,則∠F1AB=(  )
A、
12
B、
π
2
C、
3
D、
3
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用向量的數(shù)量積,余弦定理可解出t,再根據(jù)勾股定理即可求出∠F1AB.
解答: 解:設(shè)BF2=t,AF2=2t,
有AF1=2a-2t,BF1=2a-t,
AF1
BF1
=(2a-t)(2a-2t)cos∠BF1A=
16
9
a2 ①
而cos
∠BF1A=
BF
2
1
+
AF
2
1
-AB2
2BF1•AF1
=
(2a-t)2+(2a-2t)2-9t2
2(2a-t)(2a-2t)
②,
由①②得t=
1
3
a或t=-
10
3
a(舍)
,
AB=3t=a=
3
3
a
,AF1=
4
3
a,BF1=
5
3
a

可知AB2+A
F
2
1
=B
F
2
1
,
F1AB=
π
2

故選:B
點(diǎn)評(píng):本題考查了向量的數(shù)量積運(yùn)算以及橢圓的簡(jiǎn)單性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),Ox為極軸,則圓ρ=3cosθ被直線
x=2+2t
y=1+4t
(t是參數(shù))截得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x∈[0,π],則函數(shù)y=sinxcosx的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z(1+i)=-3+4i(i為虛數(shù)單位),復(fù)數(shù)Z的共軛復(fù)數(shù)為( 。
A、
1
2
+
7
2
i
B、-
7
2
+
7
2
i
C、
1
2
-
7
2
i
D、-
7
2
-
7
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右頂點(diǎn)、左焦點(diǎn)分別為A、F,點(diǎn)B(0,-b),若|
BA
+
BF
|=|
BA
-
BF
|,則橢圓的離心率值為( 。
A、
5
-1
2
B、
3
+1
2
C、
3
-1
2
D、
5
+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某程序框圖如圖所示,當(dāng)輸出y值為-6時(shí),則輸出x的值為( 。
A、64B、32C、16D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的函數(shù),命題p:f(x)滿足?x∈R,f(-x)=-f(x),命題q:f(0)=0,則命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
6
)(x∈R,ω>0)的最小正周期為4π,為了得到函數(shù)g(x)=cosωx的圖象,應(yīng)將f(x)的圖象( 。
A、向左平移
π
3
個(gè)單位長(zhǎng)度
B、向右平移
π
3
個(gè)單位長(zhǎng)度
C、向左平移
3
個(gè)單位長(zhǎng)度
D、向右平移
3
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上的任意一點(diǎn)P(x0,y0)(左、右頂點(diǎn)A,B除外)與兩焦點(diǎn)F1(-2,0),F(xiàn)2(2,0)圍成的三角形的周長(zhǎng)恒為12.
(1)求橢圓C的方程;
(2)若動(dòng)點(diǎn)Q(x,y)到點(diǎn)F2與到K(8,0)距離之比為
1
2
,求點(diǎn)Q的軌跡E的方程;
(3)設(shè)直線PB,QB的斜率分別為k1,k2,且4k1=3k2,證明:A,P,Q三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊(cè)答案