已知f(x)=x4-4x2+6,則f(x)(  )
A、在(-2,0)上遞增
B、在(0,2)上遞增
C、在(-
2
,0)上遞增
D、在(0,
2
)上遞增
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出f′(x),令f′(x)小于0得到關(guān)于x的不等式,把不等式的左邊分解因式后然后分類討論解x的范圍即為函數(shù)的單調(diào)遞增區(qū)間.
解答: 解:由題意知:f′(x)=4x3-8x≥0,
即4x(x+
2
)(x-
2
)≥0,
當(dāng)x>0時,解得x≥
2

當(dāng)x≤0時,解得-
2
≤x≤0,
綜上所述,單調(diào)增區(qū)間是[-2,0],[2,+∞),
故選:C.
點評:本題考查學(xué)生會利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,是一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x+y≥1
x-1≥0
x-y≤1
,則e2x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若冪函數(shù)f(x)=(a2-7a+13)xa-1為其定義域上的單調(diào)遞增函數(shù),則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點為F,點P是拋物線上的一點,且其縱坐標(biāo)為4,|PF|=4.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點A(x1,y1),B(x1,y1)(y1≤0,i=1,2)是拋物線上的兩點,∠APB的角平分線與x軸垂直,求△PAB的面積最大時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{bn}中,若b2b3b4=8,則b3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域D,若對任意的x1,x2∈D,都有|f(x1)-f(x2)|<1,則稱函數(shù)y=f(x)為“Storm”函數(shù),那么下列函數(shù)是“Storm”函數(shù)的是(  )
①f(x)=x2(x∈[-1,2])     
②f(x)=x3(x∈[0,1])
③f(x)=
1
x
(x∈[1,3])       
④f(x)=x3-x+a(x∈[-1,1])
A、①③B、③C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z=-1+2i對應(yīng)的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,若A:B:C=3:2:1,則a:b:c=( 。
A、3:2:1
B、
3
:2:1
C、
3
2
:1
D、2:
3
:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=4,a2=10,若{log3(an-1)}為等差數(shù)列,且Tn=
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
等于( 。
A、
1
12
(3n-1)
B、
1
4
(1-
1
3n
C、
1
4
(1-
1
3n+1
D、
1
12
(3n+1-1)

查看答案和解析>>

同步練習(xí)冊答案