【題目】已知函數(shù)f(x)=exsinx,g(x)為f(x)的導函數(shù),
(1)求f(x)的單調(diào)區(qū)間;
(2)當x∈[,π],證明:f(x)+g(x)(π﹣x)≥0.
【答案】(1)增區(qū)間為,單調(diào)遞減區(qū)間為;(2)見解析
【解析】
(1) 求出函數(shù)的導函數(shù),令可得函數(shù)的單調(diào)區(qū)間.
(2) 要證,即證sinx﹣(sinx+cosx)(x﹣π)≥0,設(shè)討論其單調(diào)性得到函數(shù)的最小值即可證明.
(1),
當,即時,f′(x)>0;
當,即時,f′(x)<0,
故函數(shù)f(x)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為;
(2)證明:由(1)知,,
當x∈[,π]時,要證,即證sinx﹣(sinx+cosx)(x﹣π)≥0,
設(shè),則h′(x)=﹣(cosx﹣sinx)(x﹣π)﹣sinx<0,
故函數(shù)h(x)在上為減函數(shù),
∴h(x)≥h(π)=0,即sinx﹣(sinx+cosx)(x﹣π)≥0,即得證.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),經(jīng)過變換后曲線變換為曲線.
(1)在以為極點,軸的非負半軸為極軸(單位長度與直角坐標系相同)的極坐標系中,求的極坐標方程;
(2)求證:直線與曲線的交點也在曲線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列,均為各項都不相等的數(shù)列,為的前n項和,.
若,求的值;
若是公比為的等比數(shù)列,求證:數(shù)列為等比數(shù)列;
若的各項都不為零,是公差為d的等差數(shù)列,求證:,,,,成等差數(shù)列的充要條件是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點集A={(x,y)|x2+y2≤1},B={(x,y)|x≤4,y≥0,3x﹣4y≥0},則點集Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的區(qū)域的面積為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) f(x)=a(|sinx|+|cosx|)﹣sin2x﹣1,a∈R.
(1)寫出函數(shù) f(x)的最小正周期(不必寫出過程);
(2)求函數(shù) f(x)的最大值;
(3)當a=1時,若函數(shù) f(x)在區(qū)間(0,kπ)(k∈N*)上恰有2015個零點,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的直角頂點在軸上,點為斜邊的中點,且平行于軸.
(Ⅰ)求點的軌跡方程;
(Ⅱ)設(shè)點的軌跡為曲線,直線與的另一個交點為.以為直徑的圓交軸于即此圓的圓心為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,曲線C的極坐標方程為射線交曲線C于點A,傾斜角為α的直線l過線段OA的中點B且與曲線C交于P、Q兩點.
(1)求曲線C的直角坐標方程及直線l的參數(shù)方程;
(2)當直線l傾斜角α為何值時, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.
(Ⅰ)求實數(shù)的取值范圍;
(Ⅱ)若有兩個不同的極值點,且,若不等式恒成立,求正實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com