【題目】已知橢圓的左、右焦點分別為,上頂點與兩焦點構(gòu)成的三角形為正三角形

1求橢圓的離心率;

2過點的直線與橢圓交于兩點,若的內(nèi)切圓的面積的最大值為,求橢圓的方程

【答案】1離心率2

【解析】

試題分析:1易得離心率;21可知,橢圓方程為,欲使的內(nèi)切圓面積最大,只需內(nèi)切圓半徑最大只需讓最大設直線

,即時,,此時,即橢圓方程為

試題解析: 1離心率

21可知,,設橢圓方程為,

因為的周長為定值

欲使的內(nèi)切圓面積最大,只需內(nèi)切圓半徑最大,只需讓最大

設直線與橢圓聯(lián)立,

得:,其中,

所以

,則,

,即時,,此時,即,

的內(nèi)切圓的面積的最大值為,知內(nèi)切圓半徑,所以

所以橢圓方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩名同學的數(shù)學學習況,對他們的次數(shù)測試成績(滿分分)進行統(tǒng)計,作出如下的莖葉圖,其中處的數(shù)字糊不清,已知甲同成績的中位數(shù)是,乙同學成績的平均分是分.

(1)求的值;

(2)現(xiàn)從成績在之間的試卷中隨機抽取兩份進行分析,求恰抽到一份甲同學試卷的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設定義在上的函數(shù)對于任意實數(shù),都有成立,且,當時,

1判斷的單調(diào)性,并加以證明;

2試問:當時,是否有值?如果有,求出最值;如果沒有,說明理由;

3解關于的不等式,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由兩點確定的直線中,斜率不存在的是

A.(4,2)與(-4,1) B.(0,3)與(3,0)

C.(3,-1)與(2, -1) D.(-2,2)與(-2,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)。

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若對定義域內(nèi)的任意恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和極值;

(2)證明:當時,函數(shù)沒有零點(提示:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面四個說法(其中A、B表示點,a表示直線,α表示平面):

①∵Aα,Bα,∴ABα;

②∵Aα,Bα,∴ABα

③∵Aa,aα,∴Aα;

④∵Aaaα,∴Aα.

其中表述方式和推理都正確的命題的序號是 (  )

A. ①④ B. ②③ C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在區(qū)間上的奇函數(shù),且,若時,有成立.

(1證明:函數(shù)在區(qū)間上是增函數(shù);

(2)解不等式;

(3)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用獨立性檢驗來考慮兩個分類變量XY是否有關系時,通過查閱臨界值表來確定推斷“XY有關系的可信度,如果k5.024,那么就推斷“XY有關系,這種推斷犯錯誤的概率不超過( )

A. 0.25 B. 0.75

C. 0.025 D. 0.975

查看答案和解析>>

同步練習冊答案