【題目】設橢圓的一個頂點與拋物線的焦點重合,、分別是橢圓的左、右焦點,其離心率橢圓右焦點的直線與橢圓交于、兩點.
(1)求橢圓的方程;
(2)是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由.
【答案】(1);(2)存在,.
【解析】
(1)求出拋物線的焦點坐標可得出,再結(jié)合離心率求出的值,由此可得出橢圓的方程;
(2)分直線的斜率是否存在進行分類討論,在直線的斜率不存在時,求出、兩點的坐標,驗證是否成立;在直線的斜率存在時,可設直線的方程為,并設點、,將直線與橢圓的方程聯(lián)立,并列出韋達定理,結(jié)合平面向量數(shù)量積的坐標運算得出關于的方程,解出即可.
(1)由拋物線的焦點為,則知,
又結(jié)合,,解得,故橢圓方程為;
(2)若直線不存在,可得,,不滿足;
故直線斜率必然存在,由橢圓右焦點,可設直線為,
記直線與橢圓的交點、,
由,消去整理得到.
由題意可知恒成立,且有,.
那么
則,解得.
因此,直線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,每個側(cè)面均為正方形,D為底邊AB的中點,E為側(cè)棱的中點.
(1)求證:平面;
(2)求證:平面;
(3)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=6sinθ,建立以極點為坐標原點,極軸為x軸正半軸的平面直角坐標系.直線l的參數(shù)方程是,(t為參數(shù)).
(1)求曲線C的直角坐標方程;
(2)若直線l與曲線C相交于A,B兩點,且|AB|=,求直線的斜率k.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為數(shù)列前項的和,,數(shù)列的通項公式.
(1)求數(shù)列的通項公式;
(2)若,則稱為數(shù)列與的公共項,將數(shù)列與的公共項,按它們在原數(shù)列中的先后順序排成一個新數(shù)列,求的值;
(3)是否存在正整數(shù)、、使得成立,若存在,求出、、;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(5分)《九章算術》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為( )
A. 1升 B. 升 C. 升 D. 升
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線,圓,以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(1)求的極坐標方程;
(2)若直線的極坐標方程為,設的交點為A,B,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an>0,前n項和為Sn,若(n∈N*,且n≥2).
(1)求數(shù)列{an}的通項公式;
(2)記,求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com