【題目】擬用長度為l的鋼筋焊接一個(gè)如圖所示的矩形框架結(jié)構(gòu)(鋼筋體積、焊接點(diǎn)均忽略不計(jì)),其中G、H分別為框架梁MN、CD的中點(diǎn),MN∥CD,設(shè)框架總面積為S平方米,BN=2CN=2x米.

(1)若S=18平方米,且l不大于27米,試求CN長度的取值范圍;
(2)若l=21米,求當(dāng)CN為多少米時(shí),才能使總面積S最大,并求最大值.

【答案】
(1)解:設(shè)AB=y米,BC=3x米,

框架總面積為3xy,

框架總長度為3y+7x米,

所以有 +7x≤27,

故7x2﹣27x+18≤0,

解得 ≤x≤3


(2)解:由(1)知3y+7x=21,

即y=7﹣ x(0<x<3)

S=3xy=3x(

=7(﹣x2+3x)=7[﹣(x﹣ 2+ ]

故當(dāng)x= 時(shí),S有最大值 平方米


【解析】(1)設(shè)AB=y米,BC=3x米,求得框架的總面積和總長度,根據(jù)題意得到不等式組,即可得到所求長度的范圍;(2)運(yùn)用矩形的面積公式,可得面積S的二次函數(shù),配方即可得到所求最大值和所求長度.
【考點(diǎn)精析】利用基本不等式在最值問題中的應(yīng)用對(duì)題目進(jìn)行判斷即可得到答案,需要熟知用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

在直角坐標(biāo)系中,已知,若。

(Ⅰ)求動(dòng)點(diǎn)P的軌跡的方程;

(Ⅱ)過點(diǎn)M的直線與(1)中軌跡相交于點(diǎn)A、B,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)Pn(an , bn)滿足an1=an·bn1 , bn1=(n∈N*)且點(diǎn)P1的坐標(biāo)為(1,-1).
(1)求過點(diǎn)P1 , P2的直線l的方程;
(2)試用數(shù)學(xué)歸納法證明:對(duì)于n∈N* , 點(diǎn)Pn都在(1)中的直線l上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在[﹣4,4]上的偶函數(shù),且f(x)= ,則不等式(1﹣2x)g(log2x)<0的解集用區(qū)間表示為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) ,其中 n 為正整數(shù).
(1)求f(1),f(2),f(3) 的值;
(2)猜想滿足不等式 f(n)<0 的正整數(shù) n 的范圍,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為R,函數(shù)f(x)= 的定義域?yàn)镸,則RM=(
A.(﹣∞,﹣1)
B.[1,+∞)
C.(1,+∞)
D.(﹣∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果命題 p(n) 對(duì) n=k 成立,那么它對(duì) n=k+2 也成立,又若 p(n) 對(duì) n=2 成立,則下列結(jié)論正確的是( )
A.p(n) 對(duì)所有自然數(shù) n 成立
B.p(n) 對(duì)所有正偶數(shù) n 成立
C.p(n) 對(duì)所有正奇數(shù) n 成立
D.p(n) 對(duì)所有大于1的自然數(shù) n 成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)若不等式 恒成立,求 a 的取值范圍;
(2)當(dāng) a=2 時(shí),求:不等式 的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 .經(jīng)計(jì)算得
(1)由上面數(shù)據(jù),試猜想出一個(gè)一般性結(jié)論;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案