【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.

【答案】(1)見(jiàn)解析;(2) 的最大值為1.

【解析】

1)根據(jù)的不同范圍,判斷導(dǎo)函數(shù)的符號(hào),從而得到的單調(diào)性;(2)方法一:構(gòu)造新函數(shù),通過(guò)討論的范圍,判斷單調(diào)性,從而確定結(jié)果;方法二:利用分離變量法,把問(wèn)題變?yōu)?/span>,求解函數(shù)最小值得到結(jié)果.

(1)

當(dāng)時(shí), 上遞增;

當(dāng)時(shí),令,解得:

上遞減,在上遞增;

當(dāng)時(shí), 上遞減

(2)由題意得:

對(duì)于恒成立

方法一、令,則

當(dāng)時(shí), 上遞增,且,符合題意;

當(dāng)時(shí), 時(shí),單調(diào)遞增

則存在,使得,且上遞減,在上遞增

得:

整數(shù)的最大值為

另一方面,時(shí),,

時(shí)成立

方法二、原不等式等價(jià)于:恒成立

,則

上遞增,又

存在,使得

上遞減,在上遞增

,整數(shù)的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著西部大開發(fā)的深入,西南地區(qū)的大學(xué)越來(lái)越受到廣大考生的青睞.下表是西南地區(qū)某大學(xué)近五年的錄取平均分與省一本線對(duì)比表:

年份

年份代碼

省一本線

錄取平均分

錄取平均分與省一本線分差

(1)根據(jù)上表數(shù)據(jù)可知,之間存在線性相關(guān)關(guān)系,求關(guān)于的性回歸方程;

(2)假設(shè)2019年該省一本線為分,利用(1)中求出的回歸方程預(yù)測(cè)2019年該大學(xué)錄取平均分.

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某煤炭公司銷售人員根據(jù)該公司以往的銷售情況,得到如下頻率分布表

日銷售量分組

[2,4)

[4,6)

[6,8)

[8,10)

[10,12]

頻率

0.10

0.20

0.30

0.25

0.15

(1)在下圖中作出這些數(shù)據(jù)的頻率分布直方圖;

(2)將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.若未來(lái)3天內(nèi)日銷售量不低于6噸的天數(shù)為X,求X的分布列、數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某有機(jī)水果種植基地試驗(yàn)種植的某水果在售賣前要成箱包裝,每箱80個(gè),每一箱水果在交付顧客之前要按約定標(biāo)準(zhǔn)對(duì)水果作檢測(cè),如檢測(cè)出不合格品,則更換為合格品.檢測(cè)時(shí),先從這一箱水果中任取10個(gè)作檢測(cè),再根據(jù)檢測(cè)結(jié)果決定是否對(duì)余下的所有水果作檢測(cè).設(shè)每個(gè)水果為不合格品的概率都為,且各個(gè)水果是否為不合格品相互獨(dú)立.

(Ⅰ)記10個(gè)水果中恰有2個(gè)不合格品的概率為,求取最大值時(shí)p的值;

(Ⅱ)現(xiàn)對(duì)一箱水果檢驗(yàn)了10個(gè),結(jié)果恰有2個(gè)不合格,以(Ⅰ)中確定的作為p的值.已知每個(gè)水果的檢測(cè)費(fèi)用為1.5元,若有不合格水果進(jìn)入顧客手中,則種植基地要對(duì)每個(gè)不合格水果支付a元的賠償費(fèi)用

(ⅰ)若不對(duì)該箱余下的水果作檢驗(yàn),這一箱水果的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為X,求EX;

(ⅱ)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),當(dāng)種植基地要對(duì)每個(gè)不合格水果支付的賠償費(fèi)用至少為多少元時(shí),將促使種植基地對(duì)這箱余下的所有水果作檢驗(yàn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,a、b、c分別是角A、B、C的對(duì)邊,向量=(2sinB,2-cos2B),=(2sin2( ),-1),.

(1)求角B的大。

(2)若a= ,b=1,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一定點(diǎn),及一定直線,以動(dòng)點(diǎn)為圓心的圓過(guò)點(diǎn),且與直線相切

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)設(shè)在直線上,直線,分別與曲線相切于,,為線段的中點(diǎn)求證:,且直線恒過(guò)定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面ABCD為菱形,,QAD的中點(diǎn).

,求證:平面PQB平面PAD;

若平面APD平面ABCD,且,點(diǎn)M在線段PC上,試確定點(diǎn)M的位置,使二面角的大小為,并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的離心率為,過(guò)其右焦點(diǎn)作斜率為的直線,交雙曲線的兩條漸近線于兩點(diǎn)(點(diǎn)在軸上方),則( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示一位騎自行車和一位騎摩托車的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時(shí)間之間的函數(shù)關(guān)系,有人根據(jù)函數(shù)圖象,提出了關(guān)于這兩個(gè)旅行者的如下信息:

①騎自行車者比騎摩托車者早出發(fā)3 h,晚到1 h

②騎自行車者是變速運(yùn)動(dòng),騎摩托車者是勻速運(yùn)動(dòng);

③騎摩托車者在出發(fā)1.5 h后追上了騎自行車者;

④騎摩托車者在出發(fā)1.5 h后與騎自行車者速度一樣.

其中,正確信息的序號(hào)是________

查看答案和解析>>

同步練習(xí)冊(cè)答案