【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),| ﹣ |= .
(1)求cos(α﹣β)的值;
(2)若0<α< ,﹣ <β<0,且sinβ=﹣ ,求sinα的值.
【答案】
(1)解:因為向量 =(cosα,sinα), =(cosβ,sinβ),| ﹣ |= = = ,所以2﹣2cos(α﹣β)= ,
所以cos(α﹣β)=
(2)解:若0<α< ,﹣ <β<0,所以0<α﹣β<π,因為cos(α﹣β)= ,所以sin(α﹣β)=
且sinβ=﹣ ,cosβ= ,
所以,sinα=sin(α﹣β+β)=sin(α﹣β)cosβ+cos(α﹣β)sinβ= =
【解析】(1)通過| ﹣ |= .求出向量的模,化簡即可求出cos(α﹣β)的值;(2)通過0<α< ,﹣ <β<0,且sinβ=﹣ ,求出cosβ的值,sin(α﹣β)的值,利用sinα=sin(α﹣β+β),然后求sinα的值.
科目:高中數學 來源: 題型:
【題目】如圖,在半徑為的半圓形鐵皮上截取一塊矩形材料ABCD(點A、B在直徑上,點C、D在半圓周上),并將其卷成一個以AD為母線的圓柱體罐子的側面(不計剪裁和拼接損耗),
(1)若要求圓柱體罐子的側面積最大,應如何截取?
(2)若要求圓柱體罐子的體積最大,應如何截。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線l的方程為(a+1)x+y+2﹣a=0(a∈R)
(1)若直線l在兩坐標軸上的截距相等,則直線l的方程是;
(2)若直線l不經過第二象限,則實數a的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,側面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且點O為AC中點.
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求三棱錐C1﹣ABC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側棱的長都是底面邊長的倍,為側棱上的點.
(1)求證:.
(2)若⊥平面,求二面角的大小.
(3)在(2)的條件下,側棱SC上是否存在一點E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)的定義域為D,若函數f(x)滿足條件:存在[a,b]D,使f(x)在[a,b]上的值域是[2a,2b],則稱f(x)為“倍擴函數”,若函數f(x)=log2(2x+t)為“倍擴函數”,則實數t的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為迎接中國共產黨的十九大的到來,某校舉辦了“祖國,你好”的詩歌朗誦比賽.該校高三年級準備從包括甲、乙、丙在內的7名學生中選派4名學生參加,要求甲、乙、丙這3名同學中至少有1人參加,且當這3名同學都參加時,甲和乙的朗誦順序不能相鄰,那么選派的4名學生不同的朗誦順序的種數為( )
A. 720 B. 768 C. 810 D. 816
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓C:x2+y2=4和直線l:x=4,M為l上一動點,A1 , A2為圓C與x軸的兩個交點,直線MA1 , MA2與圓C的另一個交點分別為P、Q.
(1)若M點的坐標為(4,2),求直線PQ方程;
(2)求證直線PQ過定點,并求出此定點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com