10.在[0,1]上隨機取一個數(shù)k,則事件“直線y=kx與函數(shù)y=lnx的圖象有2個公共點”發(fā)生的概率為$\frac{1}{e}$.

分析 令kx=lnx,則k=$\frac{lnx}{x}$,記f(x)=$\frac{lnx}{x}$,根據(jù)函數(shù)的單調(diào)性求出k的范圍,根據(jù)幾何概型求出名字條件的概率即可.

解答 解:由題意,令kx=lnx,則k=$\frac{lnx}{x}$,
記f(x)=$\frac{lnx}{x}$,f'(x)=$\frac{1-lnx}{{x}^{2}}$,
f'(x)在(0,e)上為正,在(e,+∞)上為負,
故f(x)在(0,e)遞增,在(e,+∞)遞減,
f(x)的在最大值是f(e)=$\frac{1}{e}$,
故0≤k<$\frac{1}{e}$,
由$\frac{\frac{1}{e}-0}{1-0}$=$\frac{1}{e}$,
得直線y=kx與函數(shù)y=lnx的圖象有2個公共點”發(fā)生的概率為$\frac{1}{e}$,
故答案為:$\frac{1}{e}$.

點評 本題考查了幾何概型問題,考查函數(shù)的單調(diào)性問題以及轉(zhuǎn)化思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線被圓(x-c)2+y2=4a2截得弦長為2b(其中c為雙曲線的半焦距),則該雙曲線的離心率為( 。
A.$\sqrt{6}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設數(shù)列{cn}滿足cn=$\frac{{a}_{n}+1}{_{n+1}}$,數(shù)列{cn}的前n項和為Tn,若不等式(-1)nλ<Tn+$\frac{n}{{2}^{n-1}}$對一切n∈N*,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某程序框圖如圖所示,其中$g(x)=\frac{1}{{{x^2}+x}}$,若輸出的$S=\frac{2016}{2017}$,則判斷框內(nèi)應填入的條件為( 。
A.n<2017B.n≤2017C.n>2017D.n≥2017

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知$A(3,0),B(0,3),C(cosα,sinα),\overrightarrow{AC}⊥\overrightarrow{BC}$,則sin2α的值為( 。
A.$\frac{8}{9}$B.$-\frac{8}{9}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x-mex(m∈R,e為自然對數(shù)的底數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)≤e2x對?x∈R恒成立,求實數(shù)m的取值范圍;
(3)設x1,x2(x1≠x2)是函數(shù)f(x)的兩個零點,求證x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}-2x+3(x≤1)\\ 1nx(x>1)\end{array}\right.$,若關于x的方程$f(x)=kx-\frac{1}{2}$恰有四個不相等的實數(shù)根,則實數(shù)k的取值范圍是( 。
A.$({\frac{1}{2},\sqrt{e}})$B.$[{\frac{1}{2},\sqrt{e}})$C.$({\frac{1}{2},\frac{{\sqrt{e}}}{e}}]$D.$({\frac{1}{2},\frac{{\sqrt{e}}}{e}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知實數(shù)a,b,c滿足 ${(\frac{1}{3})^x}=2,{log_3}b=\frac{1}{2},{c^{-3}}=2$,則實數(shù)a,b,c的大小關系為( 。
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設隨機變量ξ~N(μ,σ2),且 P (ξ<-3)=P(ξ>1)=0.2,則 P(-1<ξ<1)=0.3.

查看答案和解析>>

同步練習冊答案