分析 令kx=lnx,則k=$\frac{lnx}{x}$,記f(x)=$\frac{lnx}{x}$,根據(jù)函數(shù)的單調(diào)性求出k的范圍,根據(jù)幾何概型求出名字條件的概率即可.
解答 解:由題意,令kx=lnx,則k=$\frac{lnx}{x}$,
記f(x)=$\frac{lnx}{x}$,f'(x)=$\frac{1-lnx}{{x}^{2}}$,
f'(x)在(0,e)上為正,在(e,+∞)上為負,
故f(x)在(0,e)遞增,在(e,+∞)遞減,
f(x)的在最大值是f(e)=$\frac{1}{e}$,
故0≤k<$\frac{1}{e}$,
由$\frac{\frac{1}{e}-0}{1-0}$=$\frac{1}{e}$,
得直線y=kx與函數(shù)y=lnx的圖象有2個公共點”發(fā)生的概率為$\frac{1}{e}$,
故答案為:$\frac{1}{e}$.
點評 本題考查了幾何概型問題,考查函數(shù)的單調(diào)性問題以及轉(zhuǎn)化思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | n<2017 | B. | n≤2017 | C. | n>2017 | D. | n≥2017 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{9}$ | B. | $-\frac{8}{9}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({\frac{1}{2},\sqrt{e}})$ | B. | $[{\frac{1}{2},\sqrt{e}})$ | C. | $({\frac{1}{2},\frac{{\sqrt{e}}}{e}}]$ | D. | $({\frac{1}{2},\frac{{\sqrt{e}}}{e}})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com