20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線被圓(x-c)2+y2=4a2截得弦長為2b(其中c為雙曲線的半焦距),則該雙曲線的離心率為(  )
A.$\sqrt{6}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{\sqrt{6}}{2}$

分析 求出雙曲線的一條漸近線方程,利用漸近線被圓(x-c)2+y2=4a2截得弦長為2b,結(jié)合勾股定理,推出a,b,c關(guān)系,即可求出雙曲線的離心率.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為bx+ay=0,圓(x-c)2+y2=4a2的圓心到雙曲線的漸近線的距離為:$\frac{bc}{\sqrt{{a}^{2}+^{2}}}=b$,
∵漸近線被圓(x-c)2+y2=4a2截得的弦長為:2b,
∴b2+b2=4a2,
∴b2=2a2,即c2=3a2,
∴e=$\sqrt{3}$.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的性質(zhì)和應(yīng)用,圓與雙曲線以及直線的位置關(guān)系的應(yīng)用,解題時(shí)要注意公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在四棱錐P-ABCD中,$∠DBA=\frac{π}{2}$,$AB\underline{\underline∥}CD$,△PAB和△PBD都是邊長為2的等邊三角形,設(shè)P在底面ABCD的射影為O.
(1)求證:O是AD中點(diǎn);
(2)證明:BC⊥PB;
(3)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在三棱錐P-ABC中,已知PC⊥平面ABC,點(diǎn)C在平面PBA內(nèi)的射影D在直線PB上.
(1)求證:AB⊥平面PBC;
(2)設(shè)AB=BC,直線PA與平面ABC所成的角為45°,求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.平面內(nèi)有兩個(gè)定點(diǎn)A(1,0),B(1,-2),設(shè)點(diǎn)P到A、B的距離分別為d1,d2,且$\frac{lgppaps_{1}}{oodnyrd_{2}}$=$\sqrt{2}$
( I)求點(diǎn)P的軌跡C的方程;
( II)是否存在過點(diǎn)A的直線l與軌跡C相交于E、F兩點(diǎn),滿足${S_{△OEF}}=2\sqrt{2}$(O為坐標(biāo)原點(diǎn)).若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知如圖:三棱柱ABC-A1B1C1的各條棱均相等,AA1⊥平面ABC,E為AA1的中點(diǎn).
(1)求證:平面BC1E⊥平面BCC1B1;
(2)求二面角C1-BE-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,矩形ABCD中,AB=2AD=4,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE,構(gòu)成四棱錐A1-BCDE,若M為線段A1C的中點(diǎn),在翻轉(zhuǎn)過程中有如下4個(gè)命題:
①M(fèi)B∥平面A1DE;
②存在某個(gè)位置,使DE⊥A1C;
③存在某個(gè)位置,使A1D⊥CE;
④點(diǎn)A1在半徑為$\sqrt{2}$的圓面上運(yùn)動(dòng),
其中正確的命題個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某班主任準(zhǔn)備請(qǐng)2016屆畢業(yè)生做報(bào)告,要從甲、乙等8人中選4人發(fā)言,要求甲、乙兩人至少一人參加,若甲乙同時(shí)參加,則他們發(fā)言中間需恰隔一人,那么不同的發(fā)言順序共有1080種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.有一個(gè)游戲,將標(biāo)有數(shù)字1、2、3、4的四張卡片分別隨機(jī)發(fā)給甲、乙、丙、丁4個(gè)人,每人一張,并請(qǐng)這4人在看自己的卡片之前進(jìn)行預(yù)測:甲說:乙或丙拿到標(biāo)有3的卡片;乙說:甲或丙拿到標(biāo)有2的卡片;丙說:標(biāo)有1的卡片在甲手中;丁說:甲拿到標(biāo)有3的卡片.結(jié)果顯示:這4人的預(yù)測都不正確,那么甲、乙、丙、丁4個(gè)人拿到的卡片上的數(shù)字依次為4、2、1、3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在[0,1]上隨機(jī)取一個(gè)數(shù)k,則事件“直線y=kx與函數(shù)y=lnx的圖象有2個(gè)公共點(diǎn)”發(fā)生的概率為$\frac{1}{e}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案