【題目】如圖,已知四棱錐的底面是菱形,,邊的中點,點在線段.

1)證明:平面平面

2)若,平面,求四棱錐的體積.

【答案】1)證明見解析;(2.

【解析】

試題(1)由面面垂直的判定定理可知要證平面平面需證直線與平面垂直,經(jīng)過觀察可知要證平面,進而可轉(zhuǎn)化為證明兩條直線與;(2)四棱錐的體積分兩部分:一是點到平面的距離:可轉(zhuǎn)化成點到平面的距離,由已知條件可得平面,容易得出的大。灰皇的面積:容易知道的面積為,由此可得棱錐的體積.

試題解析:(1)證明:連接,因為底面是菱形,,

所以是正三角形,

因為邊的中點,,

所以,,,

所以平面

因為平面,

所以平面平面

2)連接,交于點,連接,

因為平面,所以,

易知點的重心,所以,

因為,, 所以,,因為,

所以,即,且,所以平面

,故點到平面的距離為,

因為

所以四棱錐的體積為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校決定為本校上學所需時間不少于30分鐘的學生提供校車接送服務.為了解學生上學所需時間,從全校600名學生中抽取50人統(tǒng)計上學所需時間(單位:分鐘),將600人隨機編號為001,002,…,600,抽取的50名學生上學所需時間均不超過60分鐘,將上學所需時間按如下方式分成六組,第一組上學所需時間在[0,10),第二組上學所需時間在[10,20)…,第六組上學所需時間在[50,60],得到各組人數(shù)的頻率分布直方圖,如下圖

(1)若抽取的50個樣本是用系統(tǒng)抽樣的方法得到,且第一個抽取的號碼為006,則第五個抽取的號碼是多少?

(2)若從50個樣本中屬于第四組和第六組的所有人中隨機抽取2人,設他們上學所需時間分別為a、b,求滿足的事件的概率;

(3)設學校配備的校車每輛可搭載40名學生,請根據(jù)抽樣的結(jié)果估計全校應有多少輛這樣的校車?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,的導函數(shù),設,且恒成立.

1)求的取值范圍;

2)設函數(shù)的零點為,函數(shù)的極小值點為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學參加詩詞大賽,各答3道題,每人答對每道題的概率均為,且各人是否答對每道題互不影響.

)用表示甲同學答對題目的個數(shù),求隨機變量的分布列和數(shù)學期望;

)設為事件“甲比乙答對題目數(shù)恰好多2”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角A,BC對應的邊分別是a,b,c,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面積S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的點處,乙船在中間點處,丙船在最后面的點處,且.一架無人機在空中的點處對它們進行數(shù)據(jù)測量,在同一時刻測得, .(船只與無人機的大小及其它因素忽略不計)

(1)求此時無人機到甲、丙兩船的距離之比;

(2)若此時甲、乙兩船相距100米,求無人機到丙船的距離.(精確到1米)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓,設是橢圓上任一點,從原點向圓作兩條切線,切點分別為

(1)若直線互相垂直,且點在第一象限內(nèi),求點的坐標;

(2)若直線的斜率都存在,并記為,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面,,,分別是,的中點.

(1)求三棱錐的體積;

(2)若異面直線所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】任意實數(shù),定義,設函數(shù),數(shù)列是公比大于0的等比數(shù)列,且,則____.

查看答案和解析>>

同步練習冊答案