【題目】已知曲線M:的左、右頂點分別為A,B,設(shè)P是曲線M上的任意一點.
(1)當(dāng)P異于A,B時,記直線PA、PB的斜率分別為、則是否為定值,請說明理由.
(2)已知點C在曲線M長軸上(異于A、B兩點),且的最大值為7,求點C的坐標(biāo).
【答案】(1)k1k2為定值,證明見解析;(2)C(±3,0)
【解析】
(1)由已知橢圓方程求出A,B的坐標(biāo),設(shè)P(x0,y0)(﹣4≤x0≤4),由斜率公式及點P在橢圓上即可證明k1k2是定值;
(2)設(shè)C(m,0)(﹣4<m<4),寫出兩點間的距離公式,利用配方法求最值,可得C的坐標(biāo).
(1)證明:由橢圓方程可得A(﹣4,0),B(4,0),
設(shè)P(x0,y0)(﹣4≤x0≤4),
則,,
∴k1k2為定值;
(2)設(shè)C(m,0)(﹣4<m<4),
則
.
若4m≥0,即m≥0,則7,解得m=3.
此時C,
同理,若4m<0,可得m=﹣3,此時C,
故C點坐標(biāo)為C(±3,0)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(Ⅰ)小問6分,(Ⅱ)小問6分)一家公司計劃生產(chǎn)某種小型產(chǎn)品的月固定成本為萬元,每生產(chǎn)萬件需要再投入萬元.設(shè)該公司一個月內(nèi)生產(chǎn)該小型產(chǎn)品萬件并全部銷售完,每萬件的銷售收入為萬元,且每萬件國家給予補助萬元. (為自然對數(shù)的底數(shù),是一個常數(shù).)
(Ⅰ)寫出月利潤(萬元)關(guān)于月產(chǎn)量(萬件)的函數(shù)解析式;
(Ⅱ)當(dāng)月生產(chǎn)量在萬件時,求該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤最大值(萬元)及此時的月生產(chǎn)量值(萬件). (注:月利潤=月銷售收入+月國家補助-月總成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC—A1B1C1中,CA=CB=4,,E,F(xiàn)分別為AC,CC1的中點,則直線EF與平面AA1B1B所成的角是
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個定點,, 動點滿足,設(shè)動點的軌跡為曲線,直線:.
(1)求曲線的軌跡方程;
(2)若與曲線交于不同的、兩點,且 (為坐標(biāo)原點),求直線的斜率;
(3)若,是直線上的動點,過作曲線的兩條切線、,切點為、,探究:直線是否過定點,若存在定點請寫出坐標(biāo),若不存在則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)滿足:對任何,都有,且當(dāng)時,,在下列結(jié)論中,正確命題的序號是________
① 對任何,都有;② 函數(shù)的值域是;
③ 存在,使得;④ “函數(shù)在區(qū)間上單調(diào)遞減”的充要條
件是“存在,使得”;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,正方形所在平面與正所在平面垂直,分別為的中點,在棱上.
(1)證明:平面.
(2)已知,點到的距離為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在正數(shù)x,y,使得,其中e為自然對數(shù)的底數(shù),則實數(shù)的取值范圍是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù),且),且數(shù)列是首項為,公差為的等差數(shù)列.
(1)求證:數(shù)列是等比數(shù)列;
(2)若,當(dāng)時,求數(shù)列的前項和的最小值;
(3)若,問是否存在實數(shù),使得是遞增數(shù)列?若存在,求出的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)棱錐M-ABCD的底面是正方形,且MA=MD,MA⊥AB.如果△AMD的面積為1,試求能夠放入這個棱錐的最大球的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com