【題目】已知全集為R,設集合A={x|(x+2)(x-5)≤0},,C={x|a+1≤x≤2a-1}.
(1)求A∩B,(CRA)∪B;
(2)若C(A∩B),求實數(shù)a的取值范圍.
【答案】(1) A∩B={x|3<x≤5},(CRA)∪B={x|x<-2或x>3};(2) a<2或2<a≤3.
【解析】
(1)化簡集合A、B,根據(jù)交集、補集和并集的定義計算即可;
(2)當C(A∩B)時,討論C=和C≠時,分別求出對應a的取值范圍.
(1)集合A={x|(x+2)(x-5)≤0}={x|-2≤x≤5},
={x|-2≥0}={x|≤0}={x|3<x≤6},
所以A∩B={x|3<x≤5},
CRA={x|x<-2或x>5},
則(CRA)∪B={x|x<-2或x>3};
(2)若C(A∩B),則
當C=時,a+1>2a-1,解得a<2;
當C≠時,由,解得2<a≤3;
綜上知,實數(shù)a的取值范圍是a<2或2<a≤3.
科目:高中數(shù)學 來源: 題型:
【題目】某校早上8:00開始上課,假設該校學生小張與小王都在早上7:30--7:50之間到校,且每人在該時間段的任何時刻到校是等可能的,求小張比小王至少早5分鐘到校的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉軸旋轉,有下列結論:
①當直線AB與a成60°角時,AB與b成30°角;
②當直線AB與a成60°角時,AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最大值為60°.
其中正確的是________.(填寫所有正確結論的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調查研究后發(fā)現(xiàn),每天空氣污染的指數(shù).f(t),隨時刻t(時)變化的規(guī)律滿足表達式,其中a為空氣治理調節(jié)參數(shù),且a∈(0,1).
(1)令,求x的取值范圍;
(2)若規(guī)定每天中f(t)的最大值作為當天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過5,試求調節(jié)參數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的右頂點、上頂點分別為、,坐標原點到直線的距離為,且,則橢圓的方程為( )
A. B. C. D.
【答案】D
【解析】
寫出直線的方程,利用原點到直線的距離,以及列方程組,解方程組求得的值,進而求得橢圓的方程.
橢圓右頂點坐標為,上頂點坐標為,故直線的方程為,即,依題意原點到直線的距離為,且,由此解得,故橢圓的方程為,故選D.
【點睛】
本小題主要考查過兩點的直線方程,考查點到直線的距離公式,考查橢圓標準方程的求法,考查了方程的思想.屬于中檔題.
【題型】單選題
【結束】
11
【題目】若實數(shù),滿足,則的最小值是( )
A. 0 B. C. -6 D. -3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:①函數(shù);
②向量,,且,;
③函數(shù)的圖象經(jīng)過點
請在上述三個條件中任選一個,補充在下面問題中,并解答.
已知_________________,且函數(shù)的圖象相鄰兩條對稱軸之間的距離為.
(1)若,且,求的值;
(2)求函數(shù)在上的單調遞減區(qū)間.
注:如果選擇多個條件分別解答,按第一個解答計分.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com