如圖,正三棱錐S—ABC的側(cè)棱長為1,∠ASB=45°,M和N分別是棱SB和SC上的點(diǎn),求△AMN周長的最小值.

解析:將正三棱錐沿側(cè)棱SA剪開,然后將其側(cè)面展開在一個(gè)平面上,連結(jié)AA′.

設(shè)AA′與SB交于M,交SC于N點(diǎn),顯然△AMN的周長l=AM+MN+NA′≥AA′,也就是說當(dāng)AM、MN、NA(NA′)在一條直線上時(shí),對應(yīng)的截面三角形周長最短,則AA′的長就是截面△AMN周長的最小值.

∵SA=SA′=1,∠ASB=∠BSC=∠CSA′=45°,則∠ASA′=3×45°=135°

在△ASA′中,AA′=

=.

∴△AMN周長的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱錐S-ABC中,側(cè)面SAB與底面ABC所成的二面角等于α,動點(diǎn)P在側(cè)面SAB內(nèi),PQ⊥底面ABC,垂足為Q,PQ=PS•sinα,則動點(diǎn)P的軌跡為( 。
A、線段B、圓C、一段圓弧D、一段拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱錐S-ABC的側(cè)面是邊長為a的正三角形,D是SA的中點(diǎn),E是BC的中點(diǎn),求△SDE繞直線SE旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱錐S-ABC中,∠BSC=40°,SB=2,一質(zhì)點(diǎn)自點(diǎn)B出發(fā),沿著三棱錐的側(cè)面繞行一周回到點(diǎn)B的最短路線的長為( 。
A、2
B、3
C、2
3
D、3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱錐S-ABC中,底面的邊長是3,棱錐的側(cè)面積等于底面積的2倍,M是BC的中點(diǎn).
求:(1)
AMSM
的值;
(2)二面角S-BC-A的大小;
(3)正三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過正三棱錐S—ABC的側(cè)棱SB與底面中心O作截面SBD,已知截面是等腰三角形,則側(cè)面與底面所成角的余弦值為(    )

A.                                   B.

C.                         D.

查看答案和解析>>

同步練習(xí)冊答案