已知等比數(shù)列 的所有項(xiàng)均為正數(shù),首項(xiàng)成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前項(xiàng)和為求實(shí)數(shù)的值.

(1)=;(2).

解析試題分析:(1)利用為等差中項(xiàng)列式求解;(2)記,證明其為等比數(shù)列,求出前項(xiàng)和,用已知的待定系數(shù)可得.
試題解析:(1)設(shè)數(shù)列的公比為,由條件得成等差數(shù)列,
所以                            2分
解得 
由數(shù)列的所有項(xiàng)均為正數(shù),則=2                     4分
數(shù)列的通項(xiàng)公式為=                    6分
(2)記,則          7分
不符合條件;                     8分
, 則,數(shù)列為等比數(shù)列,首項(xiàng)為,公比為2,
此時(shí)                   11分
,所以                      13分
考點(diǎn):1.等比數(shù)列;2.等差數(shù)列;3.數(shù)列求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的首項(xiàng),公差,且分別是正數(shù)等比數(shù)列項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意均有成立,設(shè)的前項(xiàng)和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的各項(xiàng)均是正數(shù),其前項(xiàng)和為,滿足.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某企業(yè)為擴(kuò)大生產(chǎn)規(guī)模,今年年初新購(gòu)置了一條高性能的生產(chǎn)線,該生產(chǎn)線在使用過(guò)程中的設(shè)備維修、燃料和動(dòng)力等消耗的費(fèi)用(稱(chēng)為設(shè)備的低劣化值)會(huì)逐年增加,第一年設(shè)備低劣化值是4萬(wàn)元,從第二年到第七年,每年設(shè)備低劣化值均比上年增加2萬(wàn)元,從第八年開(kāi)始,每年設(shè)備低劣化值比上年增加25%.
(1)設(shè)第年該生產(chǎn)線設(shè)備低劣化值為,求的表達(dá)式;
(2)若該生產(chǎn)線前年設(shè)備低劣化平均值為,當(dāng)達(dá)到或超過(guò)12萬(wàn)元時(shí),則當(dāng)年需要更新生產(chǎn)線,試判斷第幾年需要更新該生產(chǎn)線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列的前n項(xiàng)和,已知對(duì)任意的,點(diǎn)均在函數(shù)的圖像上.
(1)求r的值.
(2)當(dāng)b=2時(shí),記,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列滿足:,
(Ⅰ)求的通項(xiàng)公式及前項(xiàng)和
(Ⅱ)已知是等差數(shù)列,為前項(xiàng)和,且,.求的通項(xiàng)公式,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

公差不為零的等差數(shù)列{}中,,又成等比數(shù)列.
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列滿足,且.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 令,當(dāng)數(shù)列為遞增數(shù)列時(shí),求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的首項(xiàng),公差,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意的,均有成立,求

查看答案和解析>>

同步練習(xí)冊(cè)答案