正方體的棱長(zhǎng)為1,畫過(guò)正方體AC1棱AA1,B1C1,A1B1上三個(gè)中點(diǎn)N,L,R的截面,并求截面面積.
考點(diǎn):棱柱的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:過(guò)正方體AC1棱AA1,B1C1,A1B1上三個(gè)中點(diǎn)N,L,R的截面是一個(gè)過(guò)三組相對(duì)棱中點(diǎn)的正六邊形,畫出圖象,結(jié)合正六邊形由六個(gè)等邊三角形組成,可得答案.
解答: 解:過(guò)正方體AC1棱AA1,B1C1,A1B1上三個(gè)中點(diǎn)N,L,R的截面,
如下圖所示:

由圖可知,該截面是一個(gè)正六邊形,
∵正方體AC1棱長(zhǎng)為1,
故截面正六邊形的邊長(zhǎng)為
2
2

故面積S=6×
3
4
×(
2
2
)2
=
3
3
4
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是棱柱的結(jié)構(gòu)特征,其中分析出過(guò)正方體AC1棱AA1,B1C1,A1B1上三個(gè)中點(diǎn)N,L,R的截面形狀,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)和圓O:x2+y2=b2,過(guò)橢圓上一點(diǎn)P引圓O的兩條切線,切點(diǎn)分別為A,B.
(1)(。┤魣AO過(guò)橢圓的兩個(gè)焦點(diǎn),求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點(diǎn)P,使得∠APB=90°,求橢圓離心率e的取值范圍;
(2)設(shè)直線AB與x軸、y軸分別交于點(diǎn)M,N,問(wèn)當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),
a2
|ON|2
+
b2
|OM|2
是否為定值?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y,z為正整數(shù),且x2+y2+z2=1,試求S=
xy
z
+
yz
x
+
xz
y
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a,b},集合B={c,d,e}.
(1)試建立一個(gè)由A到B的映射;
(2)由A到B的映射共有多少個(gè)?
(3)由(1),(2)你能否得出一個(gè)結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩所學(xué)校高二年級(jí)分別有1200人,1000人,為了了解兩所學(xué)校全體高二年級(jí)學(xué)生在該地區(qū)四校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
分組 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150]
頻數(shù) 3 4 8 15 15 x 3 2
乙校:
分組 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150]
頻數(shù) 1 2 8 9 10 10 y 3
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,先用分層抽樣的方法從甲乙兩校優(yōu)秀生共抽取7人,然后再?gòu)?人中隨機(jī)抽取2人,問(wèn)兩人在同一所學(xué)校的概率;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為兩所學(xué)校的數(shù)學(xué)成績(jī)有差異.
甲校 乙校 總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
xlnx,x>a
-x2+2x-3,x≤a
,其中a≥0.
(Ⅰ)當(dāng)a=0時(shí),求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)如果對(duì)于任意x1,x2∈R,且x1<x2,都有f(x1)<f(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
x
+
5-x

(Ⅰ)求證:f(x)≤5,并說(shuō)明等號(hào)成立的條件;
(Ⅱ)若關(guān)于x的不等式f(x)≤|m-2|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,BO為邊AC上的中線,
BG
=2
GO
,設(shè)
CD
AG
,若
AD
=
1
5
AB
AC
(λ∈R),則λ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2,則f(2x-1)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案