分析 (1)求a=$\frac{1}{3}$時對應不等式的解集即可;
(2)不等式的解集不為空集時,討論a=0和a≠0時,對應不等式的解集即可.
解答 解:(1)不等式ax2+ax+(a-1)≤0,
當a=$\frac{1}{3}$時,不等式為$\frac{1}{3}$x2+$\frac{1}{3}$x-$\frac{2}{3}$≤0,
即x2+x-2≤0,
解得-2≤x≤1,
∴不等式的解集為[-2,1];
(2)不等式的解集不為空集時,
當a=0時,-1<0恒成立;
當a≠0時,a<0滿足題意;
a>0時,應滿足判別式△≥0,
可得a2-4a(a-1)≥0,
解得0<a≤$\frac{4}{3}$,
綜上,a的取值集合為{a|a≤$\frac{4}{3}$}.
點評 本題考查了含有字母系數的一元二次不等式的解法與應用問題,是綜合性題目.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 16 | B. | $\frac{16}{81}$ | C. | $\frac{81}{16}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com