【題目】如圖,是邊長為2的正方形,平面,且.
(Ⅰ)求證:平面平面;
(Ⅱ)線段上是否存在一點(diǎn),使二而角等于45°?若存在,請(qǐng)找出點(diǎn)的位置;若不存在,請(qǐng)說明理由.
【答案】(Ⅰ)詳見解析;(Ⅱ)存在點(diǎn),當(dāng)時(shí),二面角所成角為.
【解析】
(Ⅰ)要證得結(jié)論只需證得平面即可,根據(jù)線面垂直判定定理可證得結(jié)論;
(Ⅱ)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,假設(shè)線段上存在一點(diǎn)滿足題意,利用二面角的向量求法可構(gòu)造方程求得點(diǎn)坐標(biāo),得到的長.
(Ⅰ)平面,平面,平面,
,,
又,,平面,平面,
又平面,平面平面.
(Ⅱ)如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,
,,,,,
,,
假設(shè)線段上存在一點(diǎn)滿足題意,設(shè),,
軸平面,平面的一個(gè)法向量,
設(shè)平面的一個(gè)法向量為,而,,
則,令,則,,,
,
若二面角所成角為,,解得:,
存在點(diǎn),當(dāng)時(shí),二面角所成角為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)點(diǎn)xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsinθ=6.
(1)A為曲線C1上的動(dòng)點(diǎn),點(diǎn)M在線段OA上,且滿足|OM||OA|=36,求點(diǎn)M的軌跡C2的直角坐標(biāo)方程;
(2)點(diǎn)E的極坐標(biāo)為(4,),點(diǎn)F在曲線C2上,求△OEF面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿足,,設(shè),.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)若,,求實(shí)數(shù)的最小值;
(Ⅲ)當(dāng)時(shí),給出一個(gè)新數(shù)列,其中,設(shè)這個(gè)新數(shù)列的前項(xiàng)和為,若可以寫成(,且,)的形式,則稱為“指數(shù)型和”.問中的項(xiàng)是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,將曲線繞極點(diǎn)順時(shí)針旋轉(zhuǎn)后得到曲線的曲線記為.
(1)求曲線和的極坐標(biāo)方程;
(2)設(shè)和的交點(diǎn)為,,求的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)黨中央“扶貧攻堅(jiān)”的號(hào)召,某單位指導(dǎo)一貧困村通過種植紫甘薯來提高經(jīng)濟(jì)收入.紫甘薯對(duì)環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗(yàn),隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2017年種植的一批試驗(yàn)紫甘薯在溫度升高時(shí)6組死亡的株數(shù):
經(jīng)計(jì)算: , , , , , , ,其中分別為試驗(yàn)數(shù)據(jù)中的溫度和死亡株數(shù), .
(1)若用線性回歸模型,求關(guān)于的回歸方程(結(jié)果精確到);
(2)若用非線性回歸模型求得關(guān)于的回歸方程為,且相關(guān)指數(shù)為.
(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好;
(ii)用擬合效果好的模型預(yù)測溫度為時(shí)該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).
附:對(duì)于一組數(shù)據(jù), ,……, ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ;相關(guān)指數(shù)為: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代著名數(shù)學(xué)家劉徽的杰作《九章算術(shù)注》是中國最寶貴的數(shù)學(xué)遺產(chǎn)之一,書中記載了他計(jì)算圓周率所用的方法.先作一個(gè)半徑為1的單位圓,然后做其內(nèi)接正六邊形,在此基礎(chǔ)上做出內(nèi)接正邊形,這樣正多邊形的邊逐漸逼近圓周,從而得到圓周率,這種方法稱為“劉徽割圓術(shù)”.現(xiàn)設(shè)單位圓的內(nèi)接正邊形的一邊為,點(diǎn)為劣弧的中點(diǎn),則是內(nèi)接正邊形的一邊,現(xiàn)記,,則( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于某種類型的口服藥,口服小時(shí)后,由消化系統(tǒng)進(jìn)入血液中藥物濃度(單位)與時(shí)間小時(shí)的關(guān)系為,其中,為常數(shù),對(duì)于某一種藥物,,.
(1)口服藥物后______小時(shí)血液中藥物濃度最高;
(2)這種藥物服藥小時(shí)后血液中藥物濃度如下表
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
0.9545 | 0.9304 | 0.6932 | 0.4680 | 0.3010 | 0.1892 | 0.1163 | 0.072 |
一個(gè)病人上午8:00第一次服藥,要使得病人血液中藥物濃度保持在0.5個(gè)單位以上,第三次服藥時(shí)間是______(時(shí)間以整點(diǎn)為準(zhǔn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且為常數(shù)).
(1)若函數(shù)的圖象在處的切線的斜率為(為自然對(duì)數(shù)的底數(shù)),求的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;
(3)已知,且.求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com