【題目】對(duì)于某種類型的口服藥,口服小時(shí)后,由消化系統(tǒng)進(jìn)入血液中藥物濃度(單位)與時(shí)間小時(shí)的關(guān)系為,其中,為常數(shù),對(duì)于某一種藥物,,

1)口服藥物后______小時(shí)血液中藥物濃度最高;

2)這種藥物服藥小時(shí)后血液中藥物濃度如下表

1

2

3

4

5

6

7

8

0.9545

0.9304

0.6932

0.4680

0.3010

0.1892

0.1163

0.072

一個(gè)病人上午800第一次服藥,要使得病人血液中藥物濃度保持在0.5個(gè)單位以上,第三次服藥時(shí)間是______(時(shí)間以整點(diǎn)為準(zhǔn))

【答案】 1500

【解析】

根據(jù)題意,代入?yún)?shù)后可得解析式,結(jié)合二次函數(shù)性質(zhì)即可求得最大值及取最大值時(shí)自變量的值;由所給數(shù)據(jù),滿足病人血液中藥物濃度保持在0.5個(gè)單位以上的條件,即可得解.

藥物濃度(單位)與時(shí)間小時(shí)的關(guān)系為,對(duì)于某一種藥物,,

代入可得

,

所以當(dāng),即時(shí)取得最大值;

由表中數(shù)據(jù)可知,病人上午800第一次服藥,要使得病人血液中藥物濃度保持在0.5個(gè)單位以上,則第二次服藥時(shí)間在1100;第一次服藥后7個(gè)小時(shí)后藥物殘留為0.1163,第二次服藥后4小時(shí)的藥物殘留為0.4680,而.

第一次服藥后8小時(shí)的藥物殘留為0.072,第二次服藥后4小時(shí)的藥物殘留為0.3010,而

綜上可知,若使得病人血液中藥物濃度保持在0.5個(gè)單位以上,則第三次服藥時(shí)間為第一次服藥后的7小時(shí),即為1500.

故答案為:;1500.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;

(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;

(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為2的正方形,平面,且

(Ⅰ)求證:平面平面;

(Ⅱ)線段上是否存在一點(diǎn),使二而角等于45°?若存在,請(qǐng)找出點(diǎn)的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將120202020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知).

(Ⅰ)判斷當(dāng)時(shí)的單調(diào)性;

(Ⅱ)若,)為兩個(gè)極值點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形ABCD為平行四邊形,且,平面PAC.

1)求證:平面;

2)若異面直線PCAD所成的角為30°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)分別為,橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長為6,離心率為,

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)的直線交橢圓兩點(diǎn),問在軸上是否存在定點(diǎn),使得為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是一個(gè)單調(diào)遞增的等比數(shù)列,是一個(gè)等差數(shù)列,的前項(xiàng)和,其中,成等差數(shù)列,.

1)求的通項(xiàng)公式;

2)若,,既成等比數(shù)列,又成等差數(shù)列.

i)求的通項(xiàng)公式;

ii)對(duì)于數(shù)列,若,或,則為數(shù)列的轉(zhuǎn)折點(diǎn),求的轉(zhuǎn)折點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中勾股容方問題:今有勾五步,股十二步,問勾中容方幾何?魏晉時(shí)期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補(bǔ)原理給出了這個(gè)問題的一般解法:如圖1,用對(duì)角線將長和寬分別為的矩形分成兩個(gè)直角三角形,每個(gè)直角三角形再分成一個(gè)內(nèi)接正方形(黃)和兩個(gè)小直角三角形(朱、青).將三種顏色的圖形進(jìn)行重組,得到如圖2所示的矩形.該矩形長為,寬為內(nèi)接正方形的邊長.由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)為斜邊的中點(diǎn),作直角三角形的內(nèi)接正方形對(duì)角線,過點(diǎn)于點(diǎn),則下列推理正確的是(

①由圖1和圖2面積相等得

②由可得;

③由可得

④由可得

A.①②③④B.①②④C.②③④D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案