已知sinα=m(|m|<1),
π
2
<α<π
,那么tanα=( 。
A、-
m
1-m2
B、
m
1-m2
C、±
m
1-m2
D、±
1-m2
m
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:由sinα的值及α的范圍,利用同角三角函數(shù)間的基本關(guān)系求出cosα的值,即可確定出tanα的值.
解答: 解:∵sinα=m,
π
2
<α<π,
∴cosα=-
1-sin2α
=-
1-m2
,
則tanα=
m
-
1-m2

故選:A.
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二項(xiàng)式(
x
2
-
1
3x
)n(n∈N*)
的展開式中第3項(xiàng)的系數(shù)與第1項(xiàng)的系數(shù)的比是144:1.
(Ⅰ)求展開式中所有的有理項(xiàng);
(Ⅱ)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng)以及系數(shù)絕對(duì)值最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cosα=
1
2
,且α是第四象限角,則cos(α+
5
2
π)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b,c成等比數(shù)列,則兩條直線ax+by+c=0與bx+cy=0的位置關(guān)系是(  )
A、平行B、重合
C、垂直D、相交但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下結(jié)論:
①若
b
a
(λ∈R)
,則
a
b
;
②若
a
b
,則存在實(shí)數(shù)λ,使
b
a
;
③若
a
、
b
是非零向量,λ、μ∈R,那么λ
a
b
=0?λ=μ=0

④平面內(nèi)任意兩個(gè)非零向量都可以作為表示平面內(nèi)任意一個(gè)向量的一組基底.
其中正確結(jié)論的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)試驗(yàn),同時(shí)擲三顆骰子,記錄三顆骰子的點(diǎn)數(shù)之和,試驗(yàn)的基本事件總數(shù)是( 。
A、15B、16C、17D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)定義在實(shí)數(shù)集R上的函數(shù),滿足條件y=f(x+1)是偶函數(shù),且當(dāng)x≥1時(shí),f(x)=(
1
2
)x-1
,則f(
2
3
),f(
3
2
),f(
1
3
)
的大小關(guān)系是( 。
A、f(
2
3
)>f(
3
2
)>f(
1
3
)
B、f(
2
3
)>f(
1
3
)>f(
3
2
)
C、f(
3
2
)>f(
2
3
)>f(
1
3
)
D、f(
1
3
)>f(
3
2
)>f(
2
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)(0.3)2x-1≤(0.3)x+1
(2)log3x<log32
(3)a2x-7>a4x-1(a>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形.AB=BC=2,CD=SD=1.
(1)證明:SD⊥平面SAB
(2)求AB與平面SBC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案