【題目】在某中學(xué)舉行的電腦知識競賽中,將九年級兩個班參賽的學(xué)生成績(得分均為整數(shù))進行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知第二小組的頻數(shù)是40.
(1)求第二小組的頻率,并補全這個頻率分布直方圖;
(2)求這兩個班參賽的學(xué)生人數(shù);
(3)求這兩個班參賽學(xué)生的成績的中位數(shù).
【答案】(1),頻率分布直方圖見解析(2)100(3)
【解析】
利用頻率之和為和頻率分布直方圖的縱軸表示頻率/組距即可求解;
利用頻率=頻數(shù)/樣本容量即可求解;
由中位數(shù)為頻率分布直方圖所有面積和的一半所對應(yīng)的橫坐標(biāo),即設(shè)中位數(shù)為,則,解得即可.
(1)各小組的頻率之和為1.00,
由頻率分布直方圖知,第一、三、四、五小組的頻率分別是0.30,0.15,0.10,0.05,
第二小組的頻率為
第二小組的小長方形的高為.
則補全的頻率分布直方圖如圖所示:
(2)設(shè)九年級兩個班參賽的學(xué)生人數(shù)為.
第二小組的頻數(shù)為40,頻率為0.40,
,解得,
這兩個班級參賽的學(xué)生人數(shù)為100.
(3),
這兩個班參賽學(xué)生的成績的中位數(shù)應(yīng)落在第二小組內(nèi).
設(shè)中位數(shù)為,則,
解得.
這兩個班參賽學(xué)生的成績的中位數(shù)為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: 的一個頂點與拋物線: 的焦點重合,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點的直線l與橢圓C交于M、N兩點.
(1)求橢圓C的方程;
(2)是否存在直線l,使得 ,若存在,求出直線l的方程;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。
(1)求的值,并根據(jù)頻率分布直方圖估計該校學(xué)生一周課外閱讀時間的平均值;
(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”。經(jīng)過比賽后,從這6人中隨機挑選2人組成該校代表隊,求這2人來自不同組別的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個八面體的各條棱長均為,四邊形為正方形,給出下列命題:
①不平行的兩條棱所在的直線所成的角是或; ②四邊形是正方形;
③點到平面的距離為; ④平面與平面所成的銳二面角的余弦值為.
其中正確的命題全部序號為_________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐S—ABCD中,底面ABCD為長方形,SB⊥底面ABCD,其中BS=2,BA=2,BC=λ,λ的可能取值為:①;②;③;④;⑤λ=3
(1)求直線AS與平面ABCD所成角的正弦值;
(2)若線段CD上能找到點E,滿足AE⊥SE,則λ可能的取值有幾種情況?請說明理由;
(3)在(2)的條件下,當(dāng)λ為所有可能情況的最大值時,線段CD上滿足AE⊥SE的點有兩個,分別記為E1,E2,求二面角E1-SB-E2的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享單車”在很多城市相繼出現(xiàn).某運營公司為了了解某地區(qū)用戶對其所提供的服務(wù)的滿意度,隨機調(diào)查了10名用戶,得到用戶的滿意度評分分別為92,84,86,78,89,74,83,77,89.
(1)計算樣本的平均數(shù)和方差;
(2)在(1)條件下,若用戶的滿意度評分在(,)之間,則滿意度等級為“A級”.試估計該地區(qū)滿意度等級為“A級”的用戶所占的百分比.
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),;
(Ⅰ)若函數(shù)在[1,2]上是減函數(shù),求實數(shù)的取值范圍;
(Ⅱ)令,是否存在實數(shù),當(dāng)(是自然對數(shù)的底數(shù))時,函數(shù)的最小值是.若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】詹姆斯·哈登(James Harden)是美國NBA當(dāng)紅球星,自2012年10月加盟休斯頓火箭隊以來,逐漸成長為球隊的領(lǐng)袖.2017-18賽季哈登當(dāng)選常規(guī)賽MVP(最有價值球員).
年份 | 2012-13 | 2013-14 | 2014-15 | 2015-16 | 2016-17 | 2017-18 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
常規(guī)賽場均得分y | 25.9 | 25.4 | 27.4 | 29.0 | 29.1 | 30.4 |
(Ⅰ)根據(jù)表中數(shù)據(jù),求y關(guān)于t的線性回歸方程(,*);
(Ⅱ)根據(jù)線性回歸方程預(yù)測哈登在2019-20賽季常規(guī)賽場均得分.
(附)對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,
(參考數(shù)據(jù),計算結(jié)果保留小數(shù)點后一位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在,上單調(diào)遞增,求實數(shù)的取值范圍;
(2)若函數(shù)在處的切線平行于軸,是否存在整數(shù),使不等式在時恒成立?若存在,求出的最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com