【題目】詹姆斯·哈登(James Harden)是美國NBA當紅球星,自2012年10月加盟休斯頓火箭隊以來,逐漸成長為球隊的領(lǐng)袖.2017-18賽季哈登當選常規(guī)賽MVP(最有價值球員).

年份

2012-13

2013-14

2014-15

2015-16

2016-17

2017-18

年份代碼t

1

2

3

4

5

6

常規(guī)賽場均得分y

25.9

25.4

27.4

29.0

29.1

30.4

(Ⅰ)根據(jù)表中數(shù)據(jù),求y關(guān)于t的線性回歸方程,*);

(Ⅱ)根據(jù)線性回歸方程預(yù)測哈登在2019-20賽季常規(guī)賽場均得分.

(附)對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,

(參考數(shù)據(jù),計算結(jié)果保留小數(shù)點后一位)

【答案】(Ⅰ).() (Ⅱ)32.4

【解析】

(Ⅰ)求得樣本中心點,利用最小二乘法即可求得線性回歸方程;(Ⅱ)由(Ⅰ)可知:將代入線性回歸方程,即可預(yù)測哈登在2019-20賽季常規(guī)賽場均得分.

(1)由題意可知:,,

,

,

∴y關(guān)于t的線性回歸方程為.(,

(2)由(1)可得,年份代碼,

此時,所以,可預(yù)測哈登在2019-20賽季常規(guī)賽場均得分為32.4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在同一個球的球面上,,,.若四面體體積的最大值為,則這個球的表面積為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某中學(xué)舉行的電腦知識競賽中,將九年級兩個班參賽的學(xué)生成績(得分均為整數(shù))進行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知第二小組的頻數(shù)是40.

(1)求第二小組的頻率,并補全這個頻率分布直方圖;

(2)求這兩個班參賽的學(xué)生人數(shù);

(3)求這兩個班參賽學(xué)生的成績的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美,定義:能夠?qū)A的周長和面積同時等分成兩個部分的函數(shù)稱為圓的一個“太極函數(shù)”,則下列有關(guān)說法中:

①對于圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);

②函數(shù)是圓的一個太極函數(shù);

③存在圓,使得是圓的一個太極函數(shù);

④直線所對應(yīng)的函數(shù)一定是圓的太極函數(shù);

⑤若函數(shù)是圓的太極函數(shù),則

所有正確的是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開設(shè)了射擊選修課,規(guī)定向、兩個靶進行射擊:先向靶射擊一次,命中得1分,沒有命中得0分,向靶連續(xù)射擊兩次,每命中一次得2分,沒命中得0分;小明同學(xué)經(jīng)訓(xùn)練可知:向靶射擊,命中的概率為,向靶射擊,命中的概率為,假設(shè)小明同學(xué)每次射擊的結(jié)果相互獨立.現(xiàn)對小明同學(xué)進行以上三次射擊的考核.

1)求小明同學(xué)恰好命中一次的概率;

2)求小明同學(xué)獲得總分的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年消毒液和口罩成了搶手年貨,老百姓幾乎人人都需要,但對于這種口罩,大多數(shù)人不是很了解.現(xiàn)隨機抽取40人進行調(diào)查,其中45歲以下的有20人,在接受調(diào)查的40人中,對于這種口罩了解的占,其中45歲以上(含45歲)的人數(shù)占.

1)將答題卡上的列聯(lián)表補充完整;

2)判斷是否有的把握認為對這種口罩的了解與否與年齡有關(guān).

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)討論上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,各個側(cè)面均是邊長為的正方形,為線段的中點.

(1)求證:直線平面;

(2)求直線與平面所成角的余弦值;

(3)設(shè)為線段上任意一點,在內(nèi)的平面區(qū)域(包括邊界)是否存在點,使,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試求最小的正整數(shù),使得對于任何個連續(xù)正整數(shù)中,必有一數(shù),其各位數(shù)字之和是7的倍數(shù).

查看答案和解析>>

同步練習(xí)冊答案