己知命題p:方程
x2
5-k
+
y2
k+1
=1表示焦點在y軸上的橢圓,命題q:方程
x2
5-k
+
y2
k+1
=1表示雙曲線.如果p∨q為真,p∧q為假,求實數(shù)k的取值范圍.
考點:雙曲線的標準方程,橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由p∨q為真,p∧q為假,知p,q為一真一假.由此能求出k的范圍.
解答: 解:p:由k+1>5-k>0,得2<k<5,
q:由(5-k)(k+1)<0,得k<-1或k>5.(4分)
由p∨q為真,p∧q為假,知p,q為一真一假.
若p真q假,則
2<k<5
-1≤k≤5
即2<k<5.
若p假q真,則
k≤2,或k≥5
k<-1,或k>5
即k<-1或k>5.
綜上,所求k的范圍是:(-∞,-1)∪(2,5)∪(5,+∞).(8分)
點評:本題考查實數(shù)值的求法,是基礎題,解題時要認真審題,注意橢圓和雙曲線性質(zhì)的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖是各條棱長均為2的正四面體的三視圖,則正視圖三角形的面積為( 。
A、
3
B、
2
3
6
C、2
3
D、
4
3
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax2+bx(a,b∈R).
(Ⅰ)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(1)=
1
3
,且函數(shù)f(x)在(0,
1
2
)上不存在極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
ax2
2
+(a-1)x-
3
2a
,其中a>-1且a≠0.
(Ⅰ)當a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個相異的零點x1,x2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是( 。
A、33πcm2
B、42πcm2
C、48πcm2
D、52πcm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點作垂直x軸的直線與橢圓有四個交點,這四個交點恰好為正方形的四個頂點,則橢圓的離心率為( 。
A、
5
+1
2
B、
5
-1
2
C、
3
-1
2
D、
3
+1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將7個紅球,6個白球(小球只有顏色的區(qū)別)放入5個不同盒子,要求每個盒子中至少紅球、白球各一個,則不同的放法共有( 。
A、20種B、25種
C、45種D、75種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x,y∈R,x>0,y>0,且x+y>2.求證:
1+x
y
1+y
x
中至少有一個小于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)定義域為R,周期為π,且f(x)=
sinx,-
π
2
≤x<0
cosx,0≤x<
π
2
,則f(-
3
)=
 

查看答案和解析>>

同步練習冊答案