【題目】已知函數(shù)f(x)=ax3+bx在x=2處取得極值為﹣16
(1)求a,b的值;
(2)若f(x)的單調(diào)區(qū)間.
【答案】
(1)解:函數(shù)f(x)=ax3+bx的導(dǎo)數(shù)為f′(x)=3ax2+b,
由于f(x) 在x=2處取得極值為﹣16
故有f(2)=﹣16,且f′(2)=0
即12a+b=0且8a+2b=﹣16,
解得a=1,b=﹣12
(2)解:由(1)知 f(x)=x3﹣12x的導(dǎo)數(shù)為f′(x)=3x2﹣12,
令f′(x0=0,得x1=﹣2,x2=2,
當(dāng)f′(x)>0,即x<﹣2或x>2時(shí),函數(shù)f(x)為增函數(shù);
當(dāng)f′(x)<0,即﹣2<x<2時(shí),函數(shù)f(x)為減函數(shù).
則f(x)的增區(qū)間為(﹣∞,﹣2),(2,+∞),減區(qū)間為(﹣2,2)
【解析】(1)求得函數(shù)f(x)的導(dǎo)數(shù),由題意可得f(2)=﹣16,且f′(2)=0,解a,b的方程組,即可得到a,b的值;(2)求出f(x)的導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體ABCD-A′B′C′D′的棱長(zhǎng)為a,連接A′C′,A′D,A′B,BD,BC′,C′D,得到一個(gè)三棱錐.求:
(1)三棱錐A′-BC′D的表面積與正方體表面積的比值;
(2)三棱錐A′-BC′D的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=是定義在[-l,1]上的奇函數(shù),且f()=。
(1)確定函數(shù)f(x)的解析式;
(2)判斷并用定義證明f(x)在(-1,1)上的單調(diào)性;
(3)若f(1-3m)+f(1+m)≥0,求實(shí)數(shù)m的所有可能的取值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(其中A>0,ω>0,0<φ<)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為M(,-2).
(1)求f(x)的解析式;
(2)將函數(shù)f(x)的圖象向右平移個(gè)單位后,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮小到原來(lái)的,縱坐標(biāo)不變,得到y=g(x)的圖象,求函數(shù)y=g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=xex , 則( )
A.x=1為f(x)的極大值點(diǎn)
B.x=1為f(x)的極小值點(diǎn)
C.x=﹣1為f(x)的極大值點(diǎn)
D.x=﹣1為f(x)的極小值點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了預(yù)防流感,某學(xué)校對(duì)教室用藥熏消毒法進(jìn)行消毒.已知藥物釋放過(guò)程中,室內(nèi)每立方米空氣中的含藥量(毫克)與時(shí)間(小時(shí))成正比;藥物釋放完畢后,與的函數(shù)關(guān)系式為(為常數(shù)),如圖所示.據(jù)圖中提供的信息,回答下列問(wèn)題:
(1)寫(xiě)出從藥物釋放開(kāi)始,每立方米空氣中的含藥量(毫克)與時(shí)間(小時(shí))之間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到毫克以下時(shí),學(xué)生方可進(jìn)教室。那么藥物釋放開(kāi)始,至少需要經(jīng)過(guò)多少小時(shí)后,學(xué)生才能回到教室?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某公共汽車(chē)線路收支差額(票價(jià)總收人減去運(yùn)營(yíng)成本)與乘客量的函數(shù)圖象.目前這條線路虧損,為了扭虧,有關(guān)部門(mén)舉行提高票價(jià)的聽(tīng)證會(huì).乘客代表認(rèn)為:公交公司應(yīng)節(jié)約能源,改善管理,降低運(yùn)營(yíng)成本,以此舉實(shí)現(xiàn)扭虧.公交公司認(rèn)為:運(yùn)營(yíng)成本難以下降,公司己盡力,提高票價(jià)才能扭虧.根據(jù)這兩種意見(jiàn),可以把圖分別改畫(huà)成圖②和圖③,
(1)說(shuō)明圖①中點(diǎn)和點(diǎn)以及射線的實(shí)際意義;
(2)你認(rèn)為圖②和圖③兩個(gè)圖象中,反映乘客意見(jiàn)的是_________,反映公交公司意見(jiàn)的是_________.
(3)如果公交公司采用適當(dāng)提高票價(jià)又減少成本的辦法實(shí)現(xiàn)扭虧為贏,請(qǐng)你在圖④中畫(huà)出符合這種辦法的大致函數(shù)關(guān)系圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐S—ABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論
①AC⊥SB
②AB∥平面SCD
③SA與平面ABD所成的角等于SC與平面ABD所成的角
④AB與SC所成的角等于DC與SA所成的角.
⑤二面角的大小為
其中,正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),收集數(shù)據(jù)如下:
加工零件x(個(gè)) | 10 | 20 | 30 | 40 | 50 |
加工時(shí)間y(分鐘) | 64 | 69 | 75 | 82 | 90 |
經(jīng)檢驗(yàn),這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,那么對(duì)于加工零件的個(gè)數(shù)x與加工時(shí)間y這兩個(gè)變量,下列判斷正確的是( )
A.成正相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)(30,75)
B.成正相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)(30,76)
C.成負(fù)相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)(30,76)
D.成負(fù)相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)(30,75)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com