【題目】公司從某大學(xué)招收畢業(yè)生,經(jīng)過綜合測試,錄用了名男生和名女生,這名畢業(yè)生的測試成績?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績在分以上者到甲部門工作;分以下者到乙部門工作,另外只有成績高于分才能擔(dān)任助理工作

(1)如果用分層抽樣的方法從甲部門人選和乙部門人選中選取人,再從這人中選人,那么至少有一人是甲部門人選的概率是多少?

(2)若從所有甲部門人選中隨機(jī)選人,用表示所選人員中能擔(dān)任助理工作的男生人數(shù),寫出的分布列,并求出的數(shù)學(xué)期望.

【答案】(1);(2)分布列見解析,.

【解析】

試題分析:(1)根據(jù)分層抽樣和莖葉圖可知甲乙兩部門選中的人數(shù)均為人,要求至少有一人是甲部門人選的概率,可求其對立事件選中的人都是乙部門的概率即可;(2)設(shè)選畢業(yè)生中能擔(dān)任助理工作的男生人數(shù),其可能的取值分別為,根據(jù)超幾何分布求出取各值的概率,得其分布列和期望.

試題解析:(1)用分層抽樣的方法,每個人被抽中的概率為,根據(jù)莖葉圖,有甲部門人選人,乙部門人選人,所以選中的甲部門人選有(人),乙部門人選有(人),用事件表示至少有一名甲部門人被選中,則它的對立事件表示沒有一名甲部門人被選中,則,因此至少有一人是甲部門人選的概率是.

(2)依據(jù)題意,所選畢業(yè)生中能擔(dān)任助理工作的男生人數(shù)的取值分別為,

,,,

因此的分布列如下:

X

0

1

2

3

P

數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊的一角開辟為水果園種植桃樹,已知角,的長度均大于米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆

1若圍墻 長度為米,如何圍可使得三角形地塊的面積最大?

2已知段圍墻高米,段圍墻高米,造價(jià)均為每平方米若圍圍墻用了元,問如何圍可使竹籬笆用料最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的三內(nèi)角A,B,C的對邊分別是a,b,c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0.

(Ⅰ)求角A的大。

(Ⅱ)若,,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下的統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

試求:(1)y與x之間的回歸方程;

(2)當(dāng)使用年限為10年時,估計(jì)維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量

(1)分別表示將一枚質(zhì)地均勻的正方體骰子(六個面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足的概率;

(2)在連續(xù)區(qū)間上取值,求滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)有一調(diào)查小組為了解本校學(xué)生假期中白天在家時間的情況,從全校學(xué)生中抽取人,統(tǒng)計(jì)他們平均每天在家的時間在家時間在小時以上的就認(rèn)為具有屬性,否則就認(rèn)為不具有屬性

具有屬性

不具有屬性

總計(jì)

男生

20

50

70

女生

10

40

50

總計(jì)

30

90

120

1請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并通過計(jì)算判斷能否在犯錯誤的概率不超過

的前提下認(rèn)為是否具有屬性與性別有關(guān)?

2采用分層抽樣的方法從具有屬性的學(xué)生里抽取一個人的樣本,其中男生和女生各多少人?

人中隨機(jī)選取人做進(jìn)一步的調(diào)查,求選取的人至少有名女生的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

5.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角的對邊分別為,且

1)求角的大;

2)若的面積為,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)時, 恒成立, 求整數(shù)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若不等式解集是,求不等式解集;

(2)當(dāng)時,對任意的成立,實(shí)數(shù)取值范圍.

查看答案和解析>>

同步練習(xí)冊答案