【題目】已知函數(shù)滿足,其中.

(1)對(duì)于函數(shù),當(dāng)時(shí), ,求實(shí)數(shù)的集合;

(2)時(shí), 的值恒為負(fù)數(shù),求的取值范圍.

【答案】1;(2.

【解析】試題分析:(1)首先用換元法求出函數(shù)的解析式并確定其定義域,再利用函數(shù)的奇偶性與單調(diào)性將不等式化成從而解出實(shí)數(shù)值的集合;

2)由于函數(shù)R上的增函數(shù),則當(dāng)時(shí), 值恒為負(fù)數(shù)可等價(jià)轉(zhuǎn)化為f2)-4≤0,

從而得到,解此不等式可得實(shí)數(shù)的范圍.

試題解析:解:令,則

,易證得R上是遞增的奇函數(shù).

1)由,及為奇函數(shù),得

再由的單調(diào)性及定義域,得,解得

所以,實(shí)數(shù)值的集合為

2R上的增函數(shù),4R上也是增函數(shù),

x2,得f2),要使4在(-2)上恒為負(fù)數(shù),

只需f2)-4≤0,而,

整理得: (其中

解得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知向量,設(shè),向量

(1)若,求向量的夾角;

(2)若 對(duì)任意實(shí)數(shù)都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)滿足以下兩個(gè)條件的有窮數(shù)列, , 期待數(shù)列

;

.

)分別寫出一個(gè)單調(diào)遞增的階和期待數(shù)列”.

)若某期待數(shù)列是等差數(shù)列,求該數(shù)列的通項(xiàng)公式.

)記期待數(shù)列的前項(xiàng)和為,試證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)求曲線在點(diǎn)處的切線方程;

2)若在區(qū)間上恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O.D、E、F為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BCCA,AB為底邊的等腰三角形.沿虛線剪開(kāi)后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐.當(dāng)△ABC的邊長(zhǎng)變化時(shí),所得三棱錐體積(單位:cm3)的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若曲線的一條切線經(jīng)過(guò)點(diǎn),求這條切線的方程.

(2)若關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根x1,x2。

求實(shí)數(shù)a的取值范圍;

證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)ax2(a2b)xaln x(a,bR)

()當(dāng)b1時(shí)求函數(shù)f(x)的單調(diào)區(qū)間;

()當(dāng)a=-1b0時(shí),證明:f(x)ex>x2x1(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:極坐標(biāo)與參數(shù)方程

已知曲線的參數(shù)方程是為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

1寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;

2已知點(diǎn)、的極坐標(biāo)分別為,直線與曲線相交于兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, , , , 平面.

(1)求證: 平面;

(2)若為線段的中點(diǎn),且過(guò)三點(diǎn)的平面與線段交于點(diǎn),確定點(diǎn)的位置,說(shuō)明理由;并求三棱錐的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案