【題目】今年入秋以來(lái), 某市多有霧霾天氣, 空氣污染較為嚴(yán)重.市環(huán)保研究所對(duì)近期每天的空氣污染情況進(jìn)行調(diào)査研究后發(fā)現(xiàn),每一天中空氣污染指數(shù)與時(shí)刻(時(shí))的函數(shù)關(guān)系為:,其中為空氣治理調(diào)節(jié)參數(shù),且.
(1)若,求一天中哪個(gè)時(shí)刻該市的空氣污染指數(shù)最低;
(2)規(guī)定每天中的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過(guò),則調(diào)節(jié)參數(shù)應(yīng)控制在什么范圍內(nèi)?
【答案】(1)點(diǎn);(2).
【解析】
試題分析:(1)時(shí),,此時(shí),故點(diǎn)時(shí)空氣污染指數(shù)最低;(2)設(shè),換元后設(shè),即,根據(jù)的單調(diào)性求得的最大值,由此求得調(diào)節(jié)參數(shù)應(yīng)控制在內(nèi).
試題解析:
(1) 因?yàn)?/span>,則.當(dāng)時(shí),,得,即.所以一天中晩上點(diǎn)該市的空氣污染指數(shù)最低.
(2)設(shè),則當(dāng)時(shí),.設(shè),則,顯然在上是減函數(shù),在上是增函數(shù),則,因?yàn)?/span>,由,得.
所以, 當(dāng)時(shí),,符合要求; 當(dāng)時(shí),由
, 得.故調(diào)節(jié)參數(shù)應(yīng)控制在內(nèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且函數(shù)圖像經(jīng)過(guò)點(diǎn).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)且函數(shù)在區(qū)間上有且只有個(gè)極值點(diǎn)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計(jì) | |
南方學(xué)生 | 60 | 20 | 80 |
北方學(xué)生 | 10 | 10 | 20 |
合計(jì) | 70 | 30 | 100 |
(1)根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品.現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定兩個(gè)七棱錐,它們有公共面的底面,頂點(diǎn)、在底面的兩則.現(xiàn)將下述線(xiàn)段中的每一條染紅、藍(lán)兩色之一:,底面上的所有對(duì)角線(xiàn)和所有的側(cè)棱.求證:圖中心存在一個(gè)同色三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為1的菱形的兩對(duì)角線(xiàn)交于,過(guò)作A2B2∥A1B1交于連結(jié)交于,過(guò)作A3B3∥A1B1交于,…,這樣作下去得以為原點(diǎn),所在直線(xiàn)為軸,建立平面直角坐標(biāo)系,設(shè)以為半徑,圓心在,軸上的一列圓依次相外切(即與外切,),若圓T1與拋物線(xiàn)相切.求證:所有的圓都與拋物線(xiàn)相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動(dòng),每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項(xiàng)和,且Sn+2=2an,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn,設(shè)數(shù)列{bn}的前項(xiàng)和為Tn,若Tn,求n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)的投放,方便了市民短途出行,被譽(yù)為中國(guó)“新四大發(fā)明”之一.某市為研究單車(chē)用戶(hù)與年齡的相關(guān)程度,隨機(jī)調(diào)查了100位成人市民,統(tǒng)計(jì)數(shù)據(jù)如下:
不小于40歲 | 小于40歲 | 合計(jì) | |
單車(chē)用戶(hù) | 12 | y | m |
非單車(chē)用戶(hù) | x | 32 | 70 |
合計(jì) | n | 50 | 100 |
(1)求出列聯(lián)表中字母x、y、m、n的值;
(2)①?gòu)拇藰颖局,?duì)單車(chē)用戶(hù)按年齡采取分層抽樣的方法抽出5人進(jìn)行深入調(diào)研,其中不小于40歲的人應(yīng)抽多少人?
②從獨(dú)立性檢驗(yàn)角度分析,能否有以上的把握認(rèn)為該市成人市民是否為單車(chē)用戶(hù)與年齡是否小于40歲有關(guān).
下面臨界值表供參考:
P() | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com