【題目】如圖所示,在四棱柱中,底面是梯形,,側(cè)面為菱形,.

(Ⅰ)求證:

(Ⅱ)若,,直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)考慮用向量法來證明,即計算來證明.具體方法是將轉(zhuǎn)化為同起點的向量,即,利用,可求得;(2)設(shè)線段的中點為以射線射線、射線軸、軸、軸的正方向建立空間直角坐標系,利用向量法求得二面角的余弦值為.

試題解析:

1)解一:因為側(cè)面為菱形,所以,又,所以,

2)設(shè)線段的中點為,連接,由題意知平面,因為側(cè)面為菱形,所以,故可分別以射線射線、射線軸、軸、軸的正方向建立空間直角坐標系

設(shè),由可知,所以,從而,所以

可得,所以

設(shè)平面的一個法向量為,由,得,則,所以.又平面的法向量為,所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=

(e為自然對數(shù)的底數(shù)),則f(e)=________,函數(shù)yf(f(x))-1的零點個數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù),則實數(shù)m的值是______;若函數(shù)fx)在區(qū)間[-1a-2]上滿足對任意x1x2,都有成立,則實數(shù)a的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題:

①若是定義在上的偶函數(shù),且在上是增函數(shù),,則;

②若銳角、滿足c,則

③若,則恒成立;

④要得到的圖像,只需將的圖像向右平移個單位:

其中真命題的個數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的頂點, 在橢圓上, 在直線上,且

)求橢圓的離心率.

)當邊通過坐標原點時,求的長及的面積.

)當,且斜邊的長最大時,求所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某投資公司計劃投資,兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預測,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為.(注:利潤與投資金額單位:萬元)

(1)該公司已有100萬元資金,并全部投入,兩種產(chǎn)品中,其中萬元資金投入產(chǎn)品,試把兩種產(chǎn)品利潤總和表示為的函數(shù),并寫出定義域;

(2)試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

【答案】(1);(2)20,28.

【解析】

1)設(shè)投入產(chǎn)品萬元,則投入產(chǎn)品萬元,根據(jù)題目所給兩個產(chǎn)品利潤的函數(shù)關(guān)系式,求得兩種產(chǎn)品利潤總和的表達式.2)利用基本不等式求得利潤的最大值,并利用基本不等式等號成立的條件求得資金的分配方法.

(1)其中萬元資金投入產(chǎn)品,則剩余的(萬元)資金投入產(chǎn)品,

利潤總和為:

(2)因為,

所以由基本不等式得:,

當且僅當時,即:時獲得最大利潤28萬.

此時投入A產(chǎn)品20萬元,B產(chǎn)品80萬元.

【點睛】

本小題主要考查利用函數(shù)求解實際應用問題,考查利用基本不等式求最大值,屬于中檔題.

型】解答
結(jié)束】
20

【題目】已知曲線.

(1)求曲線在處的切線方程;

(2)若曲線在點處的切線與曲線相切,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三年級50名學生參加數(shù)學競賽,根據(jù)他們的成績繪制了如圖所示的頻率分布直方圖,已知分數(shù)在的矩形面積為,

求:分數(shù)在的學生人數(shù);

這50名學生成績的中位數(shù)精確到;

若分數(shù)高于60分就能進入復賽,從不能進入復賽的學生中隨機抽取兩名,求兩人來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐的底面為菱形,且, 中點.

(Ⅰ)證明: 平面;

(Ⅱ)若, ,求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知橢圓W:+=1(a>b>0),直線=軸,軸的交點分別是橢圓W的焦點與頂點。

(1)求橢圓W的方程;

(2)設(shè)直線m:=kx(k≠0)與橢圓W交于P,Q兩點,過點P(,)作PC⊥軸,垂足為點C,直線交橢圓w于另一點R。

①求△PCQ面積的最大值;②求出∠QPR的大小。

查看答案和解析>>

同步練習冊答案