【題目】已知函數(shù)f(x)=

(e為自然對數(shù)的底數(shù)),則f(e)=________,函數(shù)yf(f(x))-1的零點個數(shù)為________.

【答案】 1 3

【解析】f(e)=lne=1;

函數(shù)yf(f(x))-1的零點個數(shù)為方程f(f(x))=1的根的個數(shù),

ln x=1(x≥1),x=e,于是f(x)=e,則由ln x=e(x≥1),x=ee;或由ef(|x|+1)=e(x<1),f(|x|+1)=1,所以ln(|x|+1)=1,解得x=e-1(舍去)x=1-e;

②由ef(|x|+1)=1(x<1),f(|x|+1)=0,所以ln(|x|+1)=0,解得x=0,所以f(x)=0,只有ln x=0(x≥1),解得x=1.

綜上可知函數(shù)yf(f(x))-1x=ee,1-e,13個零點.

答案:1 3.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正方體的棱長為, , 分別是棱, 的中點,過直線, 的平面分別與棱 交于, ,設, ,給出以下四個命題:

①四邊形為平行四邊形;

②若四邊形面積 ,則有最小值;

③若四棱錐的體積, ,則是常函數(shù);

④若多面體的體積, ,則為單調(diào)函數(shù).

其中假命題為( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某校甲、乙、丙三個年級的學生志愿者人數(shù)分別是240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學去某敬老院參加獻愛心活動。

(1)應從甲、乙、丙三個年級的學生志愿者中分別抽取多少人?

(2)設抽出的7名同學分別用A,B,C,D,E,F(xiàn),G表示,現(xiàn)從中隨機抽取2名同學承擔敬老院的衛(wèi)生工作,求事件M“抽取的2名同學來自同一年級”發(fā)生的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位學生參加數(shù)學競賽培訓現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取記錄如下:

甲: , , , ,

乙: , , , , ,

用莖葉圖表示這兩組數(shù)據(jù).

)現(xiàn)要從中選派一人參加數(shù)學競賽,從統(tǒng)計學的角度考慮,你認為派哪位學生參加合適?請說明理由

)若將頻率視為概率,對甲同學在今后的三次數(shù)學競賽成績進行預測,記這次成績中高于分的次數(shù)為,求的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校某研究性學習小組在對學生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時間x(單位:分鐘)之間的關系滿足如圖所示的圖象,當x∈(0,12]時,圖象是二次函數(shù)圖象的一部分,其中頂點A(10,80),過點B(12,78);當x∈[12,40]時,圖象是線段BC,其中C(40,50).根據(jù)專家研究,當注意力指數(shù)大于62時,學習效果最佳.

(1)試求y=f(x)的函數(shù)關系式;

(2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學生學習效果最佳?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓和雙曲線有共同的焦點,,點,的交點,若是銳角三角形,則橢圓離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓,動圓與圓外切并且與圓內(nèi)切,圓心軌跡為曲線

(1)求曲線的方程;

(2)若是曲線上關于軸對稱的兩點,點,直線交曲線

于另一點,求證:直線過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.

(1)求數(shù)列{an},{bn}的通項公式;

(2)設數(shù)列{cn}滿足,數(shù)列{cn}的前n項和為Tn,若不等式(-1)nλ<Tn對一切n∈N*恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱柱中,底面是梯形,,側(cè)面為菱形,.

(Ⅰ)求證:;

(Ⅱ)若,直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案