【題目】如圖,已知四邊形為直角梯形,為矩形,平面平面,,,

1)若點中點,求證:平面;

2)若點為線段上一動點,求與平面所成角的取值范圍.

【答案】1)見解析(2

【解析】

1)在直角梯形中根據(jù)長度關系和勾股定理,可證,再由已知條件可得,從而有,在矩形中,可得,可證出,即證證明結論;

2)以為坐標原點建立空間直角坐標系,確定出坐標,設,求出平面的法向量,進而求出直線與平面所成角正弦的取值范圍,即可求解.

1)法一:在直角梯形中,,

,故由勾股定理知,

中點,則中,

,又

中,,故

因為平面平面,交線為,

所以

,故

,

,故

,即

,故

法二:

因為平面平面,交線為,

.所以

建立空間直角坐標系如圖,則

,,,故

,

,又

,故

2)法一:因為平面平面,交線為

.所以,

建立空間直角坐標系如圖,則

,

,則

設平面的法向量為

,即,故

,則,故

平面的一個法向量為

與平面所成角為,

∴當時取最大值,當時取最小值

與平面所成角的取值范圍為

法二:根據(jù)(1)知

建立空間直角坐標系如圖,則,

,則

設平面的法向量為

,即,

,取,則,

故平面的一個法向量為

與平面所成角為,

,

∴當時取最大值,當時取最小值

與平面所成角的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)求證:

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(.(12分)在一次購物抽獎活動中,假設某10張券中有一等獎獎券1張,可獲價值50元的獎品;有二等獎獎券3張,每張可獲價值10元的獎品;其余6張沒獎。某顧客從此10張獎券中任抽2張,求:

1)該顧客中獎的概率;

2)該顧客獲得的獎品總價值X(元)的概率分布列。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名運動員進行射擊訓練,已知他們擊中的環(huán)數(shù)都穩(wěn)定在、、環(huán),且每次射擊成績互不影響.根據(jù)以往的統(tǒng)計數(shù)據(jù),甲、乙射擊環(huán)數(shù)的頻率分布條形圖如下:

若將頻率視為概率,回答下列問題:

1)甲、乙各射擊一次,求甲、乙同時擊中環(huán)的概率;

2)求甲射擊一次,擊中環(huán)以上(含環(huán))的概率;

3)甲射擊次,表示這次射擊中擊中環(huán)以上(含環(huán))的次數(shù),求的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=ex-x2+a,xR,曲線y=fx)在(0,f(0))處的切線方程為y=bx

(1)求fx)的解析式;

(2)當xR時,求證:fx)≥-x2+x

(3)若fx)≥kx對任意的x∈(0,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面為正方形,平面.已知,為線段上的一點,二面角與二面角的大小相等.則的長為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】個人排成一排,在下列情況下,各有多少種不同排法?

1)甲不在兩端;

2)甲、乙、丙三個必須在一起;

3)甲、乙必須在一起,且甲、乙都不能與丙相鄰.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,,數(shù)列的前項和為,若對一切,恒有,則能取到的最大整數(shù)是( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,Fx軸正半軸上的一個動點.以F為焦點、O為頂點作拋物線C.設P為第一象限內拋物線C上的一點,Qx軸負半軸上一點,使得PQ為拋物線C的切線,且.C1、C2均與直線OP切于點P,且均與x軸相切.求點F的坐標,使圓C1C2的面積之和取到最小值,

查看答案和解析>>

同步練習冊答案