9.若點P(1,-2)位于角α終邊上,則sin2α+2cos2α=( 。
A.-$\frac{14}{5}$B.-$\frac{7}{5}$C.-2D.$\frac{4}{5}$

分析 利用點P(1,-2)位于角α終邊上,求得tanα的值,進而利用萬能公式對sin2α+2cos2α化簡整理后,把tanα的值代入即可.

解答 解:∵點P(1,-2)位于角α終邊上,
∴tanα=-2.
∴sin2α+2cos2α=$\frac{2tanα}{1+ta{n}^{2}α}$+2•$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=-2.
故選C.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系的運用,萬能公式的應(yīng)用.要熟練記憶同角三角函數(shù)中的平方關(guān)系,倒數(shù)關(guān)系及商數(shù)關(guān)系等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線y=x+1與曲線y=alnx相切,若a∈(n,n+1)(n∈N*),則n=(  )(參考數(shù)據(jù):ln2≈0.7,ln3≈1.1)
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$f(x)=3sin({ωx+\frac{π}{3}})$(ω>0),$f({\frac{π}{6}})=f({\frac{π}{3}})$,且f(x)在區(qū)間$({\frac{π}{6},\frac{π}{3}})$上有最小值,無最大值,則ω=$\frac{14}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,在△ABC中,M在BC上,N在AM上,CM=CN,且$\frac{AM}{AN}$=$\frac{BM}{CN}$,下列結(jié)論中正確的是( 。
A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果集合A={x|ax2+2x+1=0}中只有一個元素,則a的值是(  )
A.0B.0 或1C.1D.0 或1或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知二次函數(shù)f(x)滿足f(0)=1且f(x+1)-f(x)=2x+2.
(Ⅰ)求f(x)的解析式; 
(Ⅱ)若g(x)=2f(x),x∈[-1,1],求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx+x2-1,g(x)=ex-e
( I)試判斷f(x)的單調(diào)性;
( II)若對于任意的x∈(1,+∞),mg(x)>f(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知正四棱柱ABCD-A1B1C1D1中,二面角A-A1C-D1的余弦值為$-\frac{{\sqrt{10}}}{5}$.
(1)求證:BD⊥A1C1
(2)在線段CC1上是否存在點P,使得平面A1CD1⊥平面PBD,若存在,求出$\frac{CP}{{P{C_1}}}$的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知tanα=2則cos($\frac{2015π}{2}$-2α)的值為(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.2D.$-\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案