精英家教網 > 高中數學 > 題目詳情
如圖,在四面體中,,點分別是 的中點.

求證:(1)直線;
(2)平面
見解析
 EF是的中位線

 .m

練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D為AC的中點。[
(1)求證:AB1//面BDC1
(2)若AA1=3,求二面角C1—BD—C的余弦值;
(3)若在線段AB1上存在點P,使得CP面BDC1,試求AA1的長及點P的位置。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,平面平面,四邊形都是直角梯形,
,。
(Ⅰ)證明:四點共面;
(Ⅱ)設,求二面角的大小。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
(注意:在試題卷上作答無效)
四棱錐中,底面為矩形,側面底面,,
(Ⅰ)證明:;
(Ⅱ)設側面為等邊三角形,求二面角的大小。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知正四棱柱ABCDA1B1C1D1中,底面邊長AB=2,側棱BB1的長為4,過點BB1C的垂線交側棱CC1于點E,交B1C于點F,
(1)求證:A1C⊥平面BDE
(2)求A1B與平面BDE所成角的正弦值。
(3)設F是CC1上的動點(不包括端點C),求證:△DBF是銳角三角形。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,現將沿折線CD折成60°的二面角P—CD—A,設E,F,G分別是PD,PC,BC的中點。
(I)求證:PA//平面EFG;
(II)若M為線段CD上的一個動點,問當M在什么位置時,MF與平面EFG所成角最大。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)
某高速公路收費站入口處的安全標識墩如圖4所示,墩的上半部分是正四棱錐P-EFGH,下半部分是長方體ABCD-EFGH.圖5、圖6分別是該標識墩的正(主)視圖和俯視圖.
(1)請畫出該安全標識墩的側(左)視圖;
(2)求該安全標識墩的體積
(3)證明:直線BD平面PEG

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在正三棱柱ABC—A1B1C1中,各棱長都相等,D、E分別為AC1,BB1的中點。(1)求證:DE∥平面A1B1C1;(2)求二面角A1—DE—B1的大小。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在正方體
,求所成角的正弦值。

查看答案和解析>>

同步練習冊答案