如圖,在正三棱柱ABC—A1B1C1中,各棱長都相等,D、E分別為AC1,BB1的中點。(1)求證:DE∥平面A1B1C1;(2)求二面角A1—DE—B1的大小。
(Ⅰ)證明見解析(Ⅱ)
(1)取A1C1中點F,連結(jié)B1F,DF,∵D1E分別為AC1和BB1的中點,DF∥AA1
DF=(1/2)AA1,B1E∥AA1,B1E=(1/2)AA1,∴DF∥B1E,DF=B1E,∴DEB1F為平行四邊形,∴DE∥B1F,又B1F在平面A1B1C1內(nèi),DE不在平面A1B1C1,∴DE∥平面A1B1C1
(2)連結(jié)A1D,A1E,在正棱柱ABC—A1B1C1中,因為平面A1B1C1⊥平面ACC1A1,A1C1是平面A1B1C1與平面ACC1A1的交線,又因為B1F在平面A1B1C1內(nèi),且B1F⊥A1C1,,所以B1F⊥平面ACC1A1,又DE∥B1F,所以DE⊥平面ACC1A1所以∠FDA1為二面角A1—DE—B1的平面角。并且∠FDA1=(1/2)∠A1DC1,設(shè)正三棱柱的棱長為1,因為∠AA1C1=900,D是AC1的中點,所以即為所求的二面角的度數(shù)。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四面體中,,點分別是 的中點.

求證:(1)直線
(2)平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC.
(Ⅰ)求證:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—B的平面角的正切值;
(Ⅲ)設(shè)過直線AD且與BC平行的平面為,求點B到平面的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知:在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=AB=2,E,F(xiàn)分別是AB與PD的中點.
(1)求證:PC⊥BD;
(2)求證:AF//平面PEC;
(3)求二面角P—EC—D的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直三棱柱ABCA1B1C1中,AB=BC=BB1,DAC的中點,


 
  (1)求證:B1C∥平面A1BD;

  (2)若AC1⊥平面A1BD,二面角BA1C1D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是直角梯形,,且,側(cè)面底面是等邊三角形.
(1)求證:;
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是矩形,面ABCD,過BC作平面BCFE交AP于E,
交DP于F,求證:四邊形BCFE是梯形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

圖①是一個正方體的表面展開圖,MN和PQ是兩條面對角線,請在圖(2)的正方體中將MN,PQ畫出來,并就這個正方體解答下列各題:
(1)求MN和PQ所成角的大;
(2)求四面體M—NPQ的體積與正方體的體積之比;
(3)求二面角M—NQ—P的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一條直線與一個平面垂直,那么,稱此直線與平面構(gòu)成一個“正交線面對”。在一個正方體中,由兩個頂點確定的直線與頂點組成的平面(相同的平面算一個)構(gòu)成的“正交線面對”的個數(shù)是
A.24B.36C.44D.56

查看答案和解析>>

同步練習冊答案