考點(diǎn):數(shù)列的求和,等差關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件推導(dǎo)出a
n+1-3a
n=2×3
n,從而得到
an+1=3an+2×3n,由此能夠證明數(shù)列
{}是等差數(shù)列.
(2)由(1)推導(dǎo)出=a
n=2n•3
n-1,由此利用錯(cuò)位相減法能求出數(shù)列{a
n}的前n項(xiàng)和S
n.
解答:
解:(1)∵數(shù)列{a
n+1-3a
n}是等比數(shù)列,a
1=2,a
2=12,a
3=54,
∴公比q=
=
=3,
∴a
n+1-3a
n=(a
2-3a
1)•3
n-1=6×3
n-1=2×3
n,
∴
an+1=3an+2×3n,
∴
-==2,
∴數(shù)列
{}是等差數(shù)列.
(2)∵
-==2,
∴d=2,
=
+(n-1)d=2+2n-2=2n,
∴a
n=2n•3
n-1,
∴S
n=2×3
0+2•2×3+2•3×3
2+…+2n×3
n-1,①
3S
n=2×3+2•2×3
2+2•3×3
3+…+2n×3
n,②
①-②,得:-2S
n=2(1+3+3
2+3
3+…+3
n-1)-2n×3
n=2×
-2n•3
n=(1-2n)•3
n-1,
∴S
n=(n-
)•3
n+
.
點(diǎn)評(píng):本題考查等差數(shù)列的證明,考查數(shù)列前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.