已知雙曲線
x2
3
-
y2
 b2
=1(b>0)的左、右焦點分別為F1,F(xiàn)2,其一條漸近線方程為y=
2
x,點P在該雙曲線上,且
PF1
PF2
=8,則S△PF1F2=( 。
A、4
B、4
6
C、8
D、2
21
考點:雙曲線的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:先求出b,c,設|PF1|=m,|PF2|=n,PF1,PF2的夾角為α,則mncosα=8,利用余弦定理,計算mn=20,可得cosα,求出sinα,利用S△PF1F2=
1
2
mnsinα,即可得出結(jié)論.
解答: 解:∵雙曲線
x2
3
-
y2
 b2
=1(b>0)的一條漸近線方程為y=
2
x,
b
3
=
2
,
∴b=
6
,
∴c=3,
設|PF1|=m,|PF2|=n,PF1,PF2的夾角為α,則mncosα=8,
∴36=m2+n2-2mncosα,
∴m2+n2=52,
∵|m-n|=2
3
,
∴mn=20,
∴cosα=
2
5
,
∴sinα=
21
5

S△PF1F2=
1
2
mnsinα=
1
2
×20×
21
5
=2
21

故選:D.
點評:本題考查雙曲線的簡單性質(zhì),考查余弦定理,考查三角形面積的計算,考查學生分析解決問題的能力,求出mn的值是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC的三個頂點都在拋物線y2=2px(p>0)上,拋物線的焦點F在AB上,AB的傾斜角為60°,|BF|=|CF|=4,則直線AC的斜率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知sinA:sinB:sinC=1:
2
5
,則最大角等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知z1=1+i,且z1•(z1+z2)=4,則復數(shù)z2=(  )
A、1+iB、1-i
C、1+3iD、1-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,點P在橢圓C上,線段PF1的中點在y軸上,若∠PF1F2=30°,則橢圓C的離心率為( 。
A、
3
3
B、
3
6
C、
1
3
D、
1
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:ea<eb,q:lna<lnb,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)給出下列命題:
(1)已知事件A、B是互斥事件,若P(A)=0.25,P(B)=0.35,則P(A∪B)=0.60;
(2)已知事件A、B是互相獨立事件,若P(A)=0.15,P(B)=0.60,則P(
.
A
B)=0.51(
.
A
表示事件A的對立事件);
(3)(
3x
+
1
x
18的二項展開式中,共有4個有理項.
則其中真命題的序號是(  )
A、(1)(2)
B、(1)(3)
C、(2)(3)
D、(1)(2)(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知∠AOB在平面直角坐標系的第一象限中,且∠AOB=30°,其兩邊分別交反比例函數(shù)y=
3
x
在第一象限內(nèi)的圖象于A、B兩點,連結(jié)AB,當∠AOB繞點O字母轉(zhuǎn)動時,線段AB的最小值為( 。
A、
3
-1
B、2
3
-2
C、
3
D、
6
-
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,
an
an-1
=2n(n≥2),求通項公式an

查看答案和解析>>

同步練習冊答案