【題目】某企業(yè)為了解年廣告費(單位:萬元)對年銷售額(單位:萬元)的影響,對近4年的年廣告費和年銷售額的數(shù)據作了初步整理,得到下面的表格:
年廣告費/萬元 | 2 | 3 | 4 | 5 |
年銷售額/萬元 | 26 | 39 | 49 | 54 |
(1)用年廣告費作解釋變量,年銷售額作預報變量,在所給坐標系中作出這些數(shù)據的散點圖,并判斷與哪一個更適合作為年銷售額關于年廣告費的回歸方程類型(給出判斷即可,不必說明理由).
(2)根據(1)的判斷結果及表中數(shù)據,建立關于的回歸方程.
(3)已知商品的年利潤與,的關系為.根據(2)的結果,計算年廣告費約為何值時(小數(shù)點后保留兩位),年利潤的預報值最大.附:對于一組數(shù)據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.
科目:高中數(shù)學 來源: 題型:
【題目】給出下列三種說法:
①命題p:x0∈R,tan x0=1,命題q:x∈R,x2-x+1>0,則命題“p∧()”是假命題.
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3.
③命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”.
其中所有正確說法的序號為________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù)的圖象,需對函數(shù)的圖象所作的變換可以為( )
A. 先將圖象上所有點的橫坐標壓縮為原來的,縱坐標不變,再向右平移個單位
B. 先向左平移個單位,再將圖象上所有點的橫坐標壓縮為原來的,縱坐標不變
C. 先向左平移個單位,再將圖象上所有點的橫坐標壓縮為原來的,縱坐標不變
D. 先向右平移個單位,再將圖象上所有點的橫坐標伸長為原來的3倍,縱坐標不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:,為坐標原點,為橢圓的左焦點,離心率為,直線與橢圓相交于,兩點.
(1)求橢圓的方程;
(2)若是弦的中點,是橢圓上一點,求的面積最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,四棱錐中,底面,面是直角梯形,為側棱上一點.該四棱錐的俯視圖和側(左)視圖如圖2所示.
(1)證明:平面;
(2)線段上是否存在點,使與所成角的余弦值為?若存在,找到所有符合要求的點,并求的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且經過點
(1)求橢圓的方程;
(2)是否存在經過點的直線,它與橢圓相交于兩個不同點,且滿足為坐標原點)關系的點也在橢圓上,如果存在,求出直線的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設某種設備使用的年限(年)與所支出的維修費用(萬元)有以下統(tǒng)計資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費用 | 2 | 4 | 5 | 6 | 7 |
若由資料知對呈線性相關關系.試求:
(1)求;
(2)線性回歸方程;
(3)估計使用10年時,維修費用是多少?
附:利用“最小二乘法”計算的值時,可根據以下公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體的棱長為,作平面與底面不平行與棱,,,分別交于E,F,G,H,記EA,FB,GC,HD分別為,,,,若,,則多面體EFGHABCD的體積為
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com