精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xoy中,設(shè)三角形ABC的頂點(diǎn)分別為A(0,a),B(b,0),C(c,0),點(diǎn)P(0,p)在線段AO上的一點(diǎn)(異于端點(diǎn)),這里a,b,c,p均為非零實(shí)數(shù),設(shè)直線BP,CP分別與邊AC,AB交于點(diǎn)E,F(xiàn),某同學(xué)已正確求得直線OE的方程為(
1
b
-
1
c
)x+(
1
p
-
1
a
)y=0
,請(qǐng)你完成直線OF的方程:
 
分析:本題考查的知識(shí)點(diǎn)是類比推理,我們類比直線OE的方程為(
1
b
-
1
c
)x+(
1
p
-
1
a
)y=0
,分析A(0,a),B(b,0),C(c,0),P(0,p),我們可以類比推斷出直線OF的方程為:(
1
c
-
1
b
)x+(
1
p
-
1
a
)y=0
解答:解:由截距式可得直線AB:
x
b
+
y
a
=1
,
直線CP:
x
c
+
y
p
=1

兩式相減得(
1
c
-
1
b
)x+(
1
p
-
1
a
)y=0
,
顯然直線AB與CP的交點(diǎn)F滿足此方程,
又原點(diǎn)O也滿足此方程,
故為所求直線OF的方程.
故答案為:(
1
c
-
1
b
)x+(
1
p
-
1
a
)y=0
點(diǎn)評(píng):類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△OAB中,點(diǎn)P是線段OB及線段AB延長線所圍成的陰影區(qū)域(含邊界)的任意一點(diǎn),且
OP
=x
OA
+y
OB
則在直角坐標(biāo)平面內(nèi),實(shí)數(shù)對(duì)(x,y)所示的區(qū)域在直線y=4的下側(cè)部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、如圖,在直角坐標(biāo)平面內(nèi)有一個(gè)邊長為a,中心在原點(diǎn)O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點(diǎn),記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為
偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面內(nèi)有一個(gè)邊長為a、中心在原點(diǎn)O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點(diǎn),記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為(  )
A、偶函數(shù)B、奇函數(shù)C、不是奇函數(shù),也不是偶函數(shù)D、奇偶性與k有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•海珠區(qū)一模)如圖,在直角坐標(biāo)平面內(nèi),射線OT落在60°的終邊上,任作一條射線OA,OA落在∠xOT內(nèi)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,一定長m的線段,其端點(diǎn)A、B分別在x軸、y軸上滑動(dòng),設(shè)點(diǎn)M滿足(λ是大于0,且不等于1的常數(shù)).

試問:是否存在定點(diǎn)E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案