已知集合A={x|x≤-3或x≥2},B={x|1<x<5}.求A∩B和(∁RA)∪B.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專(zhuān)題:集合
分析:根據(jù)集合的基本運(yùn)算即可得到結(jié)論.
解答: 解:∵集合A={x|x≤-3或x≥2},B={x|1<x<5}.
∴A∩B={x|x≤-3或x≥2}∩{x|1<x<5}={x|2≤x<5}.
RA={x|-3<x<2},
則 (∁RA)∪B={x|-3<x<5}.
點(diǎn)評(píng):本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=0.42,b=30.4,c=log40.3,則( 。
A、a<b<c
B、a<c<b
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2-2x)ekx(k∈R,e為自然對(duì)數(shù)的底數(shù))在(-∞,-
2
]和[
2
,+∞)上遞增,在[-
2
2
]上遞減.
(Ⅰ)求實(shí)數(shù)k的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,m]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=(x2-2x+2-a2)ex,
(1)討論該函數(shù)的單調(diào)性;
(2)設(shè)g(a)為函數(shù)f(x)的極大值,證明:g(a)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2•eax(x∈R),其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=cosx(sinx-3cosx)-
2
sinxsin(x-
π
4
).
(1)求f(x)的最大值;
(2)求f(x)的對(duì)稱(chēng)中心;
(3)將y=f(x)的圖象按向量
m
平移后得到的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),求長(zhǎng)度最小的
m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是等差數(shù)列,a1=1,公差d=2,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且b1=1,a3+b5=21.
(1)求{bn}的通項(xiàng)公式;
(2)求數(shù)列{
an
bn
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x2+mx+1=0方程有兩個(gè)不等的負(fù)實(shí)根,命題q:關(guān)于x的不等式x2+(m-3)x+m2>0的解集是R.若p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=f′(1)ex-1-f(0)x+
1
2
x2,其中e是自然對(duì)數(shù)的底數(shù),f′(x)為f(x)的導(dǎo)函數(shù).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)g(x)=
1
2
x2+a與函數(shù)f(x)的圖象在區(qū)間[-1,2]上恰有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案