【題目】設(shè)數(shù)列{an}的前n項和Sn滿足Sn+1=a2Sn+a1 , 其中a2≠0.
(1)求證:{an}是首項為1的等比數(shù)列;
(2)若a2>﹣1,求證 ,并給出等號成立的充要條件.

【答案】
(1)證明:∵Sn+1=a2Sn+a1,①

∴Sn+2=a2Sn+1+a1,②

②﹣①可得:an+2=a2an+1

∵a2≠0,∴

∵Sn+1=a2Sn+a1,∴S2=a2S1+a1,∴a2=a2a1

∵a2≠0,∴a1=1

∴{an}是首項為1的等比數(shù)列;


(2)證明:當(dāng)n=1或2時, 等號成立

設(shè)n≥3,a2>﹣1,且a2≠0,由(Ⅰ)知a1=1, ,所以要證的不等式可化為

(n≥3)

即證 (n≥2)

a2=1時,等號成立

當(dāng)﹣1<a2<1時, 同為負(fù);

當(dāng)a2>1時, 同為正;

∴a2>﹣1且a2≠1時,( )( )>0,即

上面不等式n分別取1,2,…,n累加可得

綜上, ,等號成立的充要條件是n=1或2或a2=1.


【解析】(1)根據(jù)Sn+1=a2Sn+a1 , 再寫一式,兩式相減,即可證得{an}是首項為1的等比數(shù)列;(2)當(dāng)n=1或2時, 等號成立,設(shè)n≥3,a2>﹣1,且a2≠0,由(1)知a1=1, ,所以要證的不等式可化為 (n≥3),即證 (n≥2),a2=1時,等號成立;再證明a2>﹣1且a2≠1時,( )( )>0,即可證得結(jié)論.
【考點精析】利用等比數(shù)列的前n項和公式和等比關(guān)系的確定對題目進(jìn)行判斷即可得到答案,需要熟知前項和公式:;等比數(shù)列可以通過定義法、中項法、通項公式法、前n項和法進(jìn)行判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)l為曲線C:y= 在點(1,0)處的切線.
(1)求l的方程;
(2)證明:除切點(1,0)之外,曲線C在直線l的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(

A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中 ,為自然對數(shù)的底數(shù))

(Ⅰ)若函數(shù)無極值,求實數(shù)的取值范圍;

(Ⅱ)當(dāng)時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,以原點為極點,以軸正半軸為極軸.曲線的極坐標(biāo)方程為,已知傾斜角為的直線經(jīng)過點

(1)寫出直線的參數(shù)方程;曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD,AB=1,BC= .將△ABD沿矩形的對角線BD所在的直線進(jìn)行翻折,在翻折過程中(
A.存在某個位置,使得直線AC與直線BD垂直
B.存在某個位置,使得直線AB與直線CD垂直
C.存在某個位置,使得直線AD與直線BC垂直
D.對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.已知cosA= ,sinB= C.
(1)求tanC的值;
(2)若a= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:

打算觀看

不打算觀看

女生

20

b

男生

c

25

1)求出表中數(shù)據(jù)b,c;

2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);

3)為了計算10人中選出9人參加比賽的情況有多少種,我們可以發(fā)現(xiàn)它與10人中選出1人不參加比賽的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的迅速發(fā)展,越來越多的消費者開始選擇網(wǎng)絡(luò)購物這種消費方式某營銷部門統(tǒng)計了2019年某月錦州的十大特產(chǎn)的網(wǎng)絡(luò)銷售情況得到網(wǎng)民對不同特產(chǎn)的最滿意度和對應(yīng)的銷售額(萬元)數(shù)據(jù),如下表:

特產(chǎn)種類

最滿意度

銷售額(萬元)

求銷量額關(guān)于最滿意度的相關(guān)系數(shù);

我們約定:銷量額關(guān)于最滿意度的相關(guān)系數(shù)的絕對值在以上(含)是線性相關(guān)性較強;否則,線性相關(guān)性較弱.如果沒有達(dá)到較強線性相關(guān),則采取“末位淘汰”制(即銷售額最少的特產(chǎn)退出銷售),并求在剔除“末位淘汰”的特產(chǎn)后的銷量額關(guān)于最滿意度的線性回歸方程(系數(shù)精確到).

參考數(shù)據(jù):,,.

附:對于一組數(shù)據(jù).其回歸直線方程的斜率和截距的最小二乘法估計公式分別為:,.線性相關(guān)系數(shù)

查看答案和解析>>

同步練習(xí)冊答案