P是以F
1,F(xiàn)
2為焦點的橢圓
上的任意一點,若∠PF
1F
2=α,∠PF
2F
1=β,且cosα=
,sin(α+β)=
,則此橢圓的離心率為
.
試題分析:
,所以
或
(舍去).設(shè)
,由正弦定理得:
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)
,
分別是橢圓
:
的左、右焦點,過
作傾斜角為
的直線交橢圓
于
,
兩點,
到直線
的距離為
,連結(jié)橢圓
的四個頂點得到的菱形面積為
.
(1)求橢圓
的方程;
(2)過橢圓
的左頂點
作直線
交橢圓
于另一點
, 若點
是線段
垂直平分線上的一點,且滿足
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知動點
P到點
A(-2,0)與點
B(2,0)的斜率之積為-
,點
P的軌跡為曲線
C.
(1)求曲線
C的方程;
(2)若點
Q為曲線
C上的一點,直線
AQ,
BQ與直線
x=4分別交于
M,
N兩點,直線
BM與橢圓的交點為
D.求證,
A,
D,
N三點共線.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,橢圓
的離心率
,左焦點為F,
為其三個頂點,直線CF與AB交于點D,則
的值等于
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
,
是橢圓
的左、右焦點,過
的直線交橢圓于
,
兩點,若
的周長為
,則
的值為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的弦被點
平分,則此弦所在的直線方程是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設(shè)F
1,F(xiàn)
2是橢圓C:
的兩個焦點,若在C上存在一點P,使PF
1⊥PF
2,且∠PF
1F
2=30°,則C的離心率為_____________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
與橢圓
共頂點,且焦距是6,此雙曲線的漸近線是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過橢圓
的左焦點作互相垂直的兩條直線,分別交橢圓于
四點,則四邊形
面積的最小值為( )
查看答案和解析>>