已知,是橢圓的左、右焦點,過的直線交橢圓于,兩點,若的周長為,則的值為            .

試題分析:由橢圓的方程,可知,此時,而的周長等于,所以,所以.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C=1(ab>0)上任一點P到兩個焦點的距離的和為2,P與橢圓長軸兩頂點連線的斜率之積為-.設直線l過橢圓C的右焦點F,交橢圓C于兩點A(x1,y1),B(x2,y2).
(1)若 (O為坐標原點),求|y1y2|的值;
(2)當直線l與兩坐標軸都不垂直時,在x軸上是否總存在點Q,使得直線QA,QB的傾斜角互為補角?若存在,求出點Q坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線過橢圓的左焦點和一個頂點,則橢圓的方程為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點是橢圓上的一動點,為橢圓的兩個焦點,是坐標原點,若的角平分線上的一點,且,則的取值范圍為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線與橢圓有共同的焦點,且它們的離心率之和為,則雙曲線的方程是       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的中心在原點,一個焦點與拋物線的焦點重合,一個頂點的坐標為,則此橢圓方程為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是 (  )
A.2    B.6  C.4  D.12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知△ABC的周長為20,且頂點B(0,-4),C(0,4),則頂點A的軌跡方程是(    )
A.(x≠0)B.(x≠0)
C.(x≠0)D.(x≠0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P是以F1,F(xiàn)2為焦點的橢圓上的任意一點,若∠PF1F2=α,∠PF2F1=β,且cosα=,sin(α+β)=,則此橢圓的離心率為       

查看答案和解析>>

同步練習冊答案