16.在△ABC中,A,B,C的對邊分別為a,b,c,且c•cosA+a•cosC=2b•cosA.
(Ⅰ)求cosA;
(Ⅱ)若$a=\sqrt{7}$,b+c=4,求△ABC的面積.

分析 (Ⅰ)利用正弦定理、和差公式與誘導(dǎo)公式即可得出.
(Ⅱ)利用余弦定理與三角形面積計(jì)算公式即可得出.

解答 解:(Ⅰ)由正弦定理得:c=2rsinC,a=2rsinA,b=2rsinB(其中r為外接圓半徑).…(1分)
代入c•cosA+a•cosC=2b•cosA得:sinCcosA+sinAcosC=2sinBcosA
即:sin(A+C)=2sinBcosA⇒sin(π-B)=2sinBcosA.…(3分)∴sinB=2sinBcosA,…(4分)∵B∈(0,π)∴sinB≠0.∴$cosA=\frac{1}{2}$.…(5分)
(Ⅱ)由余弦定理${(\sqrt{7})^2}={b^2}+{c^2}-2bc•\frac{1}{2}$,即(b+c)2-3bc=7…(7分)
上式代入b+c=4得bc=3.…(8分)∴${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{1}{2}bc\sqrt{1-{{cos}^2}A}=\frac{1}{2}×3×\frac{{\sqrt{3}}}{2}=\frac{{3\sqrt{3}}}{4}$.
所以△ABC的面積是$\frac{{3\sqrt{3}}}{4}$.…(10分)

點(diǎn)評 本題考查了正弦定理余弦定理、和差公式及其誘導(dǎo)公式、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=x-2y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若x,x-1,2x-2是等比數(shù)列{an}的前三項(xiàng),則an=-2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若bsinB-asinA=$\frac{1}{2}$asinC,且△ABC的面積為a2sinB,則cosB=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知定點(diǎn)F1(-2,0)與F2(2,0),動點(diǎn)M滿足|MF1|-|MF2|=4,則點(diǎn)M的軌跡方程是( 。
A.$\frac{x^2}{16}-\frac{y^2}{12}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=0(x≥2)$C.y=0(|x|≥2)D.y=0(x≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知命題p:?x∈R,2x-3≤0.若(¬p)∧q是假命題,則命題q可以是(  )
A.橢圓3x2+4y2=2的焦點(diǎn)在x軸上
B.圓x2+y2-2x-4y-1=0與x軸相交
C.若集合A∪B=A,則B⊆A
D.已知點(diǎn)A(1,2)和點(diǎn)B(3,0),則直線x+2y-3=0與線段AB無交點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知雙曲線$\frac{x^2}{3}-\frac{y^2}{m}=1({m>0})$的離心率為e,經(jīng)過第一、三象限的漸近線的斜率為k,且e≥$\sqrt{2}$k.
(1)求m的取值范圍;
(2)設(shè)條件p:e≥$\sqrt{2}$k;條件q:m2-(2a+2)m+a(a+2)≤0.若p是q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若直線l的斜率為$\sqrt{3}$,則其傾斜角為(  )
A.45°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知動點(diǎn)P(x,y)到定點(diǎn)(1,1)的距離與到定直線x+y+2=0的距離的比值為$\frac{\sqrt{2}}{2}$,則動點(diǎn)P的軌跡是雙曲線.

查看答案和解析>>

同步練習(xí)冊答案