11.已知定點F1(-2,0)與F2(2,0),動點M滿足|MF1|-|MF2|=4,則點M的軌跡方程是(  )
A.$\frac{x^2}{16}-\frac{y^2}{12}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=0(x≥2)$C.y=0(|x|≥2)D.y=0(x≥2)

分析 設(shè)出M的坐標(biāo),利用兩點間的距離公式和題設(shè)等式建立方程,平方后化簡整理求得y=0,同時|MF1|>|MF2|,可推斷出 動點M的軌跡,是一條射線,起點是(2,0),方向同x軸正方向.

解答 解:假設(shè)M(x,y),根據(jù)|MF1|-|MF2|=2,可以得到:$\sqrt{(x+1)^{2}+{y}^{2}}$-$\sqrt{(x-1)^{2}+{y}^{2}}$=2,
兩邊平方,化簡可以得到y(tǒng)=0,又因為|F1F2|=2,且|MF1|>|MF2|,
所以:動點M的軌跡,是一條射線,起點是(2,0),方向同x軸正方向.
故選D

點評 本題主要考查了軌跡方程.考查了學(xué)生分析問題和解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.拋物線y2=ax的準(zhǔn)線方程是x=2,則a的值是( 。
A.8B.$\frac{1}{8}$C.-8D.$-\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}是遞增等差數(shù)列,且a1+a4=8,a2a3=15,設(shè)${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,則數(shù)列{bn}的前10項和為(  )
A.$\frac{9}{19}$B.$\frac{18}{19}$C.$\frac{20}{21}$D.$\frac{10}{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知a∈R,設(shè)命題p:空間兩點B(1,a,2)與C(a+1,a+3,0)的距離|BC|>$\sqrt{17}$;命題q:函數(shù)f(x)=x2-2ax-2在區(qū)間(0,3)上為單調(diào)函數(shù).
(Ⅰ)若命題p為真命題,求實數(shù)a的取值范圍;
(Ⅱ)若命題“¬q”和“p∧q”均為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知{an}是等比數(shù)列,a2=2且公比q>0,-2,a1,a3成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)已知bn=anan+1-λnan+1(n=1,2,3,…),設(shè)Sn是數(shù)列{bn}的前n項和.若S1>S2,且Sk<Sk+1(k=2,3,4,…),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,A,B,C的對邊分別為a,b,c,且c•cosA+a•cosC=2b•cosA.
(Ⅰ)求cosA;
(Ⅱ)若$a=\sqrt{7}$,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l:ax+y+b=0與圓O:x2+y2=4相交于A、B兩點,$M({\sqrt{3},-1})$,且$\overrightarrow{OA}+\overrightarrow{OB}=\frac{2}{3}\overrightarrow{OM}$,則$\sqrt{3}ab$等于( 。
A.-3B.-4C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行圖中程序框圖,若輸入x1=2,x2=3,x3=7,則輸出的T值為( 。
A.3B.4C.$\frac{11}{3}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,既不是奇函數(shù)又不是偶函數(shù)的是( 。
A.y=x2+|x|B.y=2x-2-xC.y=x2-3xD.y=$\frac{1}{x+1}$+$\frac{1}{x-1}$

查看答案和解析>>

同步練習(xí)冊答案