2.如圖算法框圖中含有的基本結(jié)構(gòu)是( 。
A.順序結(jié)構(gòu)B.條件結(jié)構(gòu)
C.模塊結(jié)構(gòu)D.順序結(jié)構(gòu)和條件結(jié)構(gòu)

分析 根據(jù)程序框圖執(zhí)行的程序情況,判定基本邏輯結(jié)構(gòu)是什么即可.

解答 解:由程序框圖知,執(zhí)行的程序是:
輸入x,判斷x是否大于2,是,輸出,
不是x+2,輸出,程序結(jié)束.
∴是順序結(jié)構(gòu)和條件結(jié)構(gòu),
故選:D.

點評 本題考查了用程序框圖表示的算法語言的基本邏輯結(jié)構(gòu)判定問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且αsinα-βsinβ>0,則下列關(guān)系式:①α>β;②α<β;③α+β>0;④α2>β2;⑤α2≤β2
其中正確的序號是:④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)$f(x)=x+\frac{a}{x}+lnx$在區(qū)間(1,2)上單調(diào)遞增,則實數(shù)a的取值范圍為(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,三棱柱ABC-A1B1C1中,BC⊥平面AA1C1C,BC=CA=AA1=2,∠CAA1=60°.
(1)求證:AC1⊥A1B;
(2)求直線A1B與平面BAC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={1,3},集合B={3,4},則A∪B等于( 。
A.{1}B.{3}C.{1,3,3,4}D.{1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(sin($\frac{x}{2}$+$\frac{π}{12}$),cos$\frac{x}{2}$),$\overrightarrow$=(cos($\frac{x}{2}$+$\frac{π}{12}$),-cos$\frac{x}{2}$),x∈[$\frac{π}{2}$,π],設(shè)函數(shù)f(x)=$\overrightarrow a•\overrightarrow b$.
(1)若cosx=-$\frac{3}{5}$,求函數(shù)f(x)的值;
(2)將函數(shù)f(x)的圖象先向右平移m個單位,再向上平移n個單位,使平移后的圖象關(guān)于原點對稱,若0<m<π,n>0,試求6m+2n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}}$+(1.5)2+($\sqrt{2}$×$\root{4}{3}$)4
(2)$\frac{{1g\sqrt{27}+1g8-1g\sqrt{1000}}}{{\frac{1}{2}1g0.3+1g2}}+{(\sqrt{5}-2)^0}+{0.027^{-\frac{1}{3}}}×{(-\frac{1}{3})^{-2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線mx+(2m-1)y=0和直線3x+my+3=0垂直,則實數(shù)m的值為( 。
A.1B.0C.2D.-1或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若f(x)是定義在(0,+∞)上的增函數(shù),且對于任意x>0滿足f ($\frac{x}{y}$)=f(x)-f (y).
(1)求f(1)的值;
(2)若f(6)=1,試求解不等式f(x+5)-f ($\frac{1}{x}$)<2.

查看答案和解析>>

同步練習(xí)冊答案