已知一塊半徑為r的殘缺的半圓形材料ABC,O為半圓的圓心,OC=
1
2
r
,殘缺部分位于過點C的豎直線的右側.現(xiàn)要在這塊材料上截出一個直角三角形,有兩種設計方案:如圖甲,以BC為斜邊;如圖乙,直角頂點E在線段OC上,且另一個頂點D在
AB
上.要使截出的直角三角形的面積最大,應該選擇哪一種方案?請說明理由,并求出截得直角三角形面積的最大值.
如圖甲,

設∠DBC=α(0<α<
π
2
),
BD=
3r
2
cosα
,DC=
3r
2
sinα
,
所以S△BDC=
1
2
BD•DC=
1
2
3r
2
cosα•
3r
2
sinα

=
9
16
r2sin2α≤
9
16
r2
,
當且僅當α=
π
4
時取等號,
此時點D到BC的距離為
3
4
r
,可以保證點D在半圓形材料ABC內部,
因此按照圖甲方案得到直角三角形的最大面積為
9
16
r2

如圖乙,

設∠EOD=θ,則OE=rcosθ,DE=rsinθ,
所以S△BDE=
1
2
r2(1+cosθ)sinθ
,θ∈[
π
3
,
π
2
]

f(θ)=
1
2
r2(1+cosθ)sinθ
,則f′(θ)=
1
2
r2(1+cosθ)(2cosθ-1)
,
θ∈[
π
3
,
π
2
]
時,f'(θ)≤0,所以θ=
π
3
時,即點E與點C重合時,△BDE的面積最大值為
3
3
8
r2

因為
3
3
8
r2
9
16
r2
,
所以選擇圖乙的方案,截得的直角三角形面積最大,最大值為
3
3
8
r2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=
eax
x2+1
,a∈R

(Ⅰ)當a=1時,求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)求函數(shù)f(x)單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三次函數(shù)f(x)的導函數(shù)f′(x)=3x2-3ax,f(0)=b,(a、b實數(shù)).若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2,1,且1<a<2,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1+lnx
x

(1)若函數(shù)f(x)在區(qū)間(
a
2
,a+
1
2
)
上存在極值,其中a>0,求實數(shù)a的取值范圍.
(2)設g(x)=xf(x)+bx-1+ln(2-x
)
(b>0)
,若g(x)在(0,1]上的最大值為
1
2
,求實數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3-
1
2
x2+cx+d在x=2處取得極值.
(1)求c的值;
(2)當x<0時,f(x)<
1
6
d2+2d恒成立,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

f(x)=2x4-3x2+1在[
1
2
,2]上的最大值、最小值分別是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=2x2-
1
3
x3
在區(qū)間[0,6]上的最大值是( 。
A.
32
3
B.
16
3
C.12D.9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

有甲、乙兩個工廠,甲廠位于一直線河岸的岸邊A處,乙廠與甲廠在河的兩側,乙廠位于離河岸40km的B處,乙廠到河岸的垂足D與A相距50km,兩廠要在此岸邊合建一個供水站C,從供水站到甲廠和乙廠的水管費用分別為3a元和5a元,問供水站C建在何處才能使水管費用最省?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù)f(x)=xsinx在x=x0處取得極值,則(1+x02)cos2x0的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案