【題目】8把椅子擺成一排,4人隨機就座,任何兩人不相鄰的坐法種數(shù)為(
A.144
B.120
C.72
D.24

【答案】B
【解析】解:使用“插空法“.第一步,4個人先坐成一排,有 =24種,即全排;第二步,由于4個人必須隔開,因此必須先在1號位置與2號位置之間擺放一張凳子,2號位置與3號位置之間擺放一張凳子,3號位置與4號位置之間擺放一張凳子,剩余一張凳子可以選擇4個人的左右共5個空擋,隨便擺放即可,即有5種辦法.根據(jù)分步計數(shù)原理,有24×5=120種. 故選:B.
使用“插空法“.第一步,4個人先坐成一排,有 =24種,即全排;第二步,由于4個人必須隔開,因此必須先在1號位置與2號位置之間擺放一張凳子,2號位置與3號位置之間擺放一張凳子,3號位置與4號位置之間擺放一張凳子,剩余一張凳子可以選擇4個人的左右共5個空擋,隨便擺放即可,即有5種辦法.根據(jù)分步計數(shù)原理可得結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3﹣3x+1在閉區(qū)間[﹣3,0]上的最大值、最小值分別是(
A.1,﹣1
B.3,﹣17
C.1,﹣17
D.9,﹣19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于空間直角坐標(biāo)系O﹣xyz中的一點P(1,2,3),有下列說法:
①點P到坐標(biāo)原點的距離為 ;
②OP的中點坐標(biāo)為( );
③點P關(guān)于x軸對稱的點的坐標(biāo)為(﹣1,﹣2,﹣3);
④點P關(guān)于坐標(biāo)原點對稱的點的坐標(biāo)為(1,2,﹣3);
⑤點P關(guān)于坐標(biāo)平面xOy對稱的點的坐標(biāo)為(1,2,﹣3).
其中正確的個數(shù)是( )
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f (x)的導(dǎo)函數(shù)為f′(x),對任意x∈R都有f (x)>f′(x)成立,則(
A.3f (ln2)<2 f (ln3)
B.3 f (ln2)=2 f (ln3)
C.3 f(ln2)>2 f (ln3)
D.3 f (ln2)與2 f (ln3)的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD與ADEF為平行四邊形,M,N,G分別是AB,AD,EF的中點.求證:

(1)BE∥平面DMF;
(2)平面BDE∥平面MNG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列三個命題: ①若一個球的半徑縮小到原來的 ,則其體積縮小到原來的 ;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標(biāo)準(zhǔn)差也相等;
③直線x+y+1=0與圓x2+y2= 相切.
其中真命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有4個人去參加娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(1)求這4個人中恰有2人去參加甲游戲的概率;
(2)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(x+ ),x∈R,且f( )=
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解含參數(shù)a的一元二次不等式:(a﹣2)x2+(2a﹣1)x+6>0.

查看答案和解析>>

同步練習(xí)冊答案