【題目】已知直線l:y=﹣x+1與橢圓C: =1(a>b>0))相交于不同的兩點(diǎn)A、B,且線段AB的中點(diǎn)P的坐標(biāo)為( ,

(1)求橢圓C離心率;
(2)設(shè)O為坐標(biāo)原點(diǎn),且2|OP|=|AB|,求橢圓C的方程.

【答案】
(1)解:將直線y=1﹣x代入橢圓方程,可得

(b2+a2)x2﹣2a2x+a2﹣a2b2=0,

則x1+x2= ,

由AB的中點(diǎn)P的坐標(biāo)為( ),可得

= ,即為a2=2b2,

可得c2=a2﹣b2= a2,

則橢圓C離心率為e= =


(2)解:由(1)可得,

△=4a4﹣4(b2+a2)(a2﹣a2b2)>0,

可得a2+b2>1,即b2 ,

x1+x2= ,x1x2= = ,

由2|OP|=|AB|,可得:

2 = ,

解得b2= (滿足△>0),即有a2= ,

可得橢圓方程為 =1


【解析】(1)將直線方程代入橢圓方程,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,結(jié)合離心率公式計(jì)算即可得到所求值;(2)運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,以及兩點(diǎn)的距離公式,解方程即可得到a,b,進(jìn)而得到橢圓方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市自來(lái)水公司每?jī)蓚(gè)月(記為一個(gè)收費(fèi)周期)對(duì)用戶收一次水費(fèi),收費(fèi)標(biāo)準(zhǔn)如下:當(dāng)每戶用水量不超過(guò)噸時(shí),按每噸元收取;當(dāng)該用戶用水量超過(guò)噸時(shí),超出部分按每噸元收取

(1)記某用戶在一個(gè)收費(fèi)周期的用水量為噸,所繳水費(fèi)為元,寫出關(guān)于的函數(shù)解析式.

(2)在某一個(gè)收費(fèi)周期內(nèi),若甲、乙兩用戶所繳水費(fèi)的和為元,且甲、乙兩用戶用水量之比為,試求出甲、乙兩用戶在該收費(fèi)周期內(nèi)各自的用水量和水費(fèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD – A1B1C1D1中,點(diǎn)E,FG分別是棱BC,A1B1,B1C1的中點(diǎn).

(1)求異面直線EFDG所成角的余弦值;

(2)設(shè)二面角ABDG的大小為θ,求 |cosθ| 的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,已知橢圓的離心率為,左右焦點(diǎn)分別為,以點(diǎn)為圓心,以為半徑的圓與以點(diǎn)為圓心,以為半徑的圓相交,且交點(diǎn)在橢圓上.

)求橢圓的方程.

)設(shè)橢圓 為橢圓上任意一點(diǎn),過(guò)點(diǎn)的直線交橢圓兩點(diǎn),射線交橢圓于點(diǎn)

①求的值.

②(理科生做)求面積的最大值.

③(文科生做)當(dāng)時(shí), 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中不正確的序號(hào)為____________

①若函數(shù)上單調(diào)遞減,則實(shí)數(shù)的取值范圍是;

②函數(shù)是偶函數(shù),但不是奇函數(shù);

③已知函數(shù)的定義域?yàn)?/span>,則函數(shù)的定義域是;

④若函數(shù)上有最小值-4,(,為非零常數(shù)),則函數(shù)上有最大值6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)一天中不同時(shí)刻的用電量(萬(wàn)千瓦時(shí))關(guān)于時(shí)間(小時(shí),)的函數(shù)近似滿足,如圖是函數(shù)的部分圖象(對(duì)應(yīng)凌晨點(diǎn)).

(Ⅰ)根據(jù)圖象,求的值;

(Ⅱ)由于當(dāng)?shù)囟眷F霾嚴(yán)重,從環(huán)保的角度,既要控制火力發(fā)電廠的排放量,電力供應(yīng)有限;又要控制企業(yè)的排放量,于是需要對(duì)各企業(yè)實(shí)行分時(shí)拉閘限電措施.已知該企業(yè)某日前半日能分配到的供電量 (萬(wàn)千瓦時(shí))與時(shí)間(小時(shí))的關(guān)系可用線性函數(shù)模型模擬.當(dāng)供電量小于該企業(yè)的用電量時(shí),企業(yè)就必須停產(chǎn).初步預(yù)計(jì)停產(chǎn)時(shí)間在中午11點(diǎn)到12點(diǎn)間,為保證該企業(yè)既可提前準(zhǔn)備應(yīng)對(duì)停產(chǎn),又可盡量減少停產(chǎn)時(shí)間,請(qǐng)從這個(gè)初步預(yù)計(jì)的時(shí)間段開(kāi)始,用二分法幫其估算出精確到15分鐘的停產(chǎn)時(shí)間段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若是實(shí)數(shù)集上的奇函數(shù),求的值;

(2)用定義證明在實(shí)數(shù)集上的單調(diào)遞增;

(3)若的值域?yàn)?/span>,且[的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 。

(1)當(dāng)時(shí),求函數(shù)上的最大值;

(2)若函數(shù)處有極小值,求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

【答案】C

【解析】

,

∴函數(shù)的單調(diào)減區(qū)間為

又函數(shù)在區(qū)間上單調(diào)遞減,

,

,解得,

實(shí)數(shù)的取值范圍是C.

點(diǎn)睛已知函數(shù)在區(qū)間上的單調(diào)性求參數(shù)的方法

(1)利用導(dǎo)數(shù)求解,轉(zhuǎn)化為導(dǎo)函數(shù)在該區(qū)間上大于等于零(或小于等于零)恒成立的問(wèn)題求解,一般通過(guò)分離參數(shù)化為求函數(shù)的最值的問(wèn)題

(2)先求出已知函數(shù)的單調(diào)區(qū)間,然后將問(wèn)題轉(zhuǎn)化為所給的區(qū)間是函數(shù)相應(yīng)的單調(diào)區(qū)間的子集的問(wèn)題處理

型】單選題
結(jié)束】
7

【題目】設(shè),函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后與原圖象重合,則的最小值是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案