【題目】如圖,在正方體ABCD – A1B1C1D1中,點E,FG分別是棱BC,A1B1B1C1的中點.

(1)求異面直線EFDG所成角的余弦值;

(2)設二面角ABDG的大小為θ,求 |cosθ| 的值

【答案】(1) (2)

【解析】試題分析:(1)建立空間直角坐標系,進而通過計算即可得解;

(2)計算得平面DBG和平面ABD的法向量n1n2通過計算cos<n1,n2即可得解.

試題解析:

如圖,以{,, }為正交基底建立坐標系Dxyz

設正方體的邊長為2,D(0,0,0),A(2,0,0),

B(2,2,0),E(1,2,0),F(2,1,2),G(1,2,2).

(1)因為=(2,1,2)-(1,2,0)=(1,-1,2),

= (1,2,2),

所以·=1×1+(-1)×2+2×2=3,

||=,||=3.

從而cos<,>=,

即向量的夾角的余弦為,

從而異面直線EFDG所成角的余弦值為

(2)=(2,2,0),= (1,2,2).

設平面DBG的一個法向量為n1=(x,yz ).

由題意,得

x=2,可得y=-2,z=1.

所以n1=(2,-2,1).

又平面ABD的一個法向量n2=(0,0,2),

所以cos<n1,n2>=

因此 |cosθ|=

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】給定集合A={a1 , a2 , a3 , …,an}(n∈N* , n≥3)中,定義ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的個數(shù)為集合A兩元素和的容量,用L(A)表示.若數(shù)列{an}是公差不為0的等差數(shù)列,設集合A={a1 , a2 , a3 , …,a2016},則L(A)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2ωx+ sin2ωx(ω>0)的最小正周期為π,給出下列四個命題:
①f(x)的最大值為3;
②將f(x)的圖象向左平移 后所得的函數(shù)是偶函數(shù);
③f(x)在區(qū)間[﹣ , ]上單調(diào)遞增;
④f(x)的圖象關(guān)于直線x= 對稱.
其中正確說法的序號是(
A.②③
B.①④
C.①②④
D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內(nèi)的向量,滿足:,且的夾角為,又,,則由滿足條件的點所組成的圖形面積是( )

A. 2 B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的定義域為R,并且圖象關(guān)于y軸對稱,當x≤-1時,yf(x)的圖象是經(jīng)過點(-2,0)(-1,1)的射線,又在yf(x)的圖象中有一部分是頂點在(0,2),且經(jīng)過點(1,1)的一段拋物線.

(1)試求出函數(shù)f(x)的表達式,作出其圖象

(2)根據(jù)圖象說出函數(shù)的單調(diào)區(qū)間,以及在每一個單調(diào)區(qū)間上函數(shù)是增函數(shù)還是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ2﹣4ρsinθ+3=0,A、B兩點極坐標分別為(1,π)、(1,0).
(1)求曲線C的參數(shù)方程;
(2)在曲線C上取一點P,求|AP|2+|BP|2的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax2-1-lnx,其中aR.

(1)若a=0,求過點(0,-1)且與曲線yf(x)相切的直線方程;

(2)若函數(shù)f(x)有兩個零點x1,x2,

a的取值范圍;

求證:f ′(x1)+f ′(x2)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:y=﹣x+1與橢圓C: =1(a>b>0))相交于不同的兩點A、B,且線段AB的中點P的坐標為( ,

(1)求橢圓C離心率;
(2)設O為坐標原點,且2|OP|=|AB|,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關(guān)命題的說法中錯誤的是

A. 在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等 .

B. 一個樣本的方差是,則這組數(shù)據(jù)的總和等于60.

C. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越差.

D. 對于命題使得0,則,使.

查看答案和解析>>

同步練習冊答案