【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當x∈[﹣1,0]時,函數(shù)解析式為
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

【答案】解:(Ⅰ)設(shè)x∈[0,1],則﹣x∈[﹣1,0].∴f(x)= =4x﹣2x
又∵f(﹣x)=﹣f(x)=﹣(4x﹣2x)∴f(x)=2x﹣4x
所以,f(x)在[0,1]上的解析式為f(x)=2x﹣4x
(Ⅱ)當x∈[0,1],f(x)=2x﹣4x=﹣(2x2+2x ,
∴設(shè)t=2x(t>0),則y=﹣t2+t∵x∈[0,1],∴t∈[1,2]
當t=1時x=0,f(x)max=0;當t=2時x=1,f(x)min=﹣2
【解析】(Ⅰ)設(shè)x∈[0,1],則﹣x∈[﹣1,0],利用條件結(jié)合奇函數(shù)的定義求f(x)在[0,1]上的解析式;(Ⅱ)設(shè)t=2x(t>0),則y=﹣t2+t,利用二次函數(shù)的性質(zhì)求f(x)在[0,1]上的最值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù).

(1)求實數(shù)的值;

(2)用定義證明函數(shù)上的單調(diào)性;

(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)與函數(shù)y=ex的圖象關(guān)于直線y=x對稱,函數(shù)y=g(x)的圖象與y=f(x)的圖象關(guān)于x軸對稱,若g(a)=1,則實數(shù)a的值為( )
A.﹣e
B.
C.
D.e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,其中.

(1)當時,求函數(shù)的值域;

(2)若對任意,均有,求的取值范圍;

(3)當時,設(shè),若的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,P,Q分別為AB,DA上動點,且△APQ的周長為2,設(shè) AP=x,AQ=y.

(1)求x,y之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)判斷∠PCQ的大小是否為定值?并說明理由;
(3)設(shè)△PCQ的面積分別為S,求S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB,PC的中點.

(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若∠PDA=45°,求EF與平面ABCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形O′A′B′C′的邊長為1cm,它是水平放置的一個平面圖形的直觀圖,則原圖的周長是(

A.8cm
B.6cm
C.2(1+ )cm
D.2(1+ )cm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合A={x|25≤2x≤4},B={x|x2+2mx﹣3m2<0,m>0}.

(1)若m=2,求A∩B;

(2)若BA,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案