(本小題滿分14分)

如圖,直線相交于點,點.以為端點的曲線段C上的任一點到的距離與到點的距離相等.若為銳角三角形,,,且.

(1)曲線段C是哪類圓錐曲線的一部分?并建立適當?shù)淖鴺讼,求曲線段C所在的圓錐曲線的標準方程;

(2)在(1)所建的坐標系下,已知點在曲線段C上,直線,求直線被圓截得的弦長的取值范圍.

 

 

 

【答案】

解:法一:

(1)依題意易知曲線段c是拋物線的一部分

(2)如圖建立坐標系,以l1x軸,MN的垂直平分線

y軸,點O為坐標原點.

依題意知:曲線段C是以點N為焦點,以l2為準線的拋物線

的一段,其中A、B分別為C的端點.

設曲線段C的方程為,y2=2pxp>0),(xAxxB,y>0)

其中xAxB分別為A、B的橫坐標,p=|MN|.所以M,0),N,0)

由|AM|=,|AN|=3得:

xA2+2pxA=17             ①

xA2+2pxA=9        ②

由①②兩式聯(lián)立解得xA,再將其代入①式并由p>0,解得

因為△AMN是銳角三角形,所以xA,故舍去

所以p=4,xA=1.由點B在曲線段C上,得xB=|BN|=4.

綜上得曲線段C的方程為y2=8x(1≤x≤4,y>0).

(3)在曲線段C上,

的圓心到直線的距離為

則直線被圓截得的弦長

所以則直線被圓截得的弦長的取值范圍為

 

解法二:

(1)同前

(2)如圖建立坐標系,分別以l1l2x、y軸,

M為坐標原點.作AEl1,ADl2,BFl2,垂足分別

ED、F.設AxAyA)、BxB,yB)、NxN,0)

依題意有xA=|ME|=|DA|=|AN|=3,

yA=|DM|=

由于△AMN為銳角三角形,故有

xN=|ME|+|EN|=|ME|+=4,xB=|BF|=|BN|=6.

設點Pxy)是曲線段C上任一點,則由題意知P屬于集合

{(xy)|(xxN2+y2=x2,xAxxBy>0}

故曲線段C的方程為y2=8(x-2)(3≤x≤6,y>0).

(3)方法同前

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設AB是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案